

Module code: EG7032
Module title: Highway & Railway Engineering
Module leader: Dr Alex Apeagyei, CEng FIHE FHEA
Assignment tutor: Dr Alex Apeagyei & Dr Rasha Mohammad
Assignment title: Highway & Railway Engineering Individual Project
Assignment number: 1

Student Name:
Student ID:
Word Count:

Table of Contents

1. Evaluation of Pavement	3
1a) Cumulative Sums Method to Find Blocks of Uniforms	3
1b) Method of Estimating Subgrade Modulus Based on Boussinesq Equation	5
1c) Backcalculation of Pavement Layer Modulus	7
2. Highway Pavement Analysis and Design	9
2a) Effective Thickness Determination Using Asphalt Institute Method	9
2b) Overlay Thickness Design Using Effective Thickness Method	10
2c) Benkelman Beam Deflection Analysis and Overlay Design	10
3. Track Structure Analysis & Design.....	12
3a) Types of Trackbed Structures.....	12
3b) Service Life Analysis: Concrete vs. Wooden Ties	14
4. Environmental Impacts	19
4a) Mechanism of Ballast System Failure	19
4b) Implications of Ballast Failure	22
4c) Differences Between Railway Ballast and Highway Granular Base Aggregates	24
4d) Critical Factors for High-Speed Rail Track Ballast.....	25
Reference List	27

1. Evaluation of Pavement

1a) Cumulative Sums Method to Find Blocks of Uniforms

Cumulative sum (CuSum) is a statistical test which has been large in the field of pavement assessment when structural behaviour change in a highway segment needs to be explored (Agunwamba, Tiza and Okafor, 2024). This is the case where it is applied to deflection information that was obtained by conducting a Falling Weight Deflectometer (FWD) survey on a two-lane highway. The sensor that one analyses is the D7 deflection sensor, which is located at a distance of 72 inches from the loaded plate, therefore mostly sensitive to the subgrade conditions.

Step 1: Subgrade response attention

To check the subgrade, attention should be drawn to the greatest deflection readings away from the load plate (usually D7, 72 inches). This will implement Cumulative Sum (CUSUM), with which we will determine possible change points of the data pattern.

Step 2: Calculating the Mean of D7

Let us denote $D7$ as the subgrade centre.

$$\begin{aligned} D7^- &= \frac{1}{20} \sum_{i=1}^{20} D7i \\ &= \frac{20(0.87 + 0.97 + \dots + 1.34)}{20} \\ &= 1.2485 \end{aligned}$$

Step 3: CUSUM computation

$$\begin{aligned} S_0 &= 0 \\ S_i &= S_{i-1} + (D7i - D7^-) \end{aligned}$$

For example,

$$\begin{aligned} S_1 &= 0 + (0.87 - 1.2485) = -0.3785 \\ S_2 &= -0.3785 + (0.97 - 1.2485) = -0.6570 \end{aligned}$$

Now, CUSUM has been calculated based on S_i and the mean value of $D7$.

Station	D7	D7 - Mean	CUSUM
1	0.87	-0.3785	-0.3785
2	0.97	-0.2785	-0.6570
3	0.99	-0.2585	-0.9155
4	1.11	-0.1385	-1.0540
5	1.21	-0.0385	-1.0925
6	1.14	-0.1085	-1.2010
7	1.52	+0.2715	-0.9295
8	0.61	-0.6385	-1.5680
9	0.96	-0.2885	-1.8565
10	0.96	-0.2885	-2.1450
11	1.60	+0.3515	-1.7935
12	1.24	-0.0085	-1.8020
13	1.56	+0.3115	-1.4905
14	1.44	+0.1915	-1.2990
15	1.40	+0.1515	-1.1475

16	0.99	-0.2585	-1.4060
17	1.13	-0.1185	-1.5245
18	2.60	+1.3515	-0.1730
19	0.98	-0.2685	-0.4415
20	1.34	+0.0915	-0.3500

Step 4: Analysis of CUSUM Plot

When the CUSUM is plotted, it is demonstrated like the following

- Fine contour of drop-off down to Station ~10.
- Then a steep increase to Station 11 to 14.
- There is a major deviation at Station 18, which represents a significant peak.

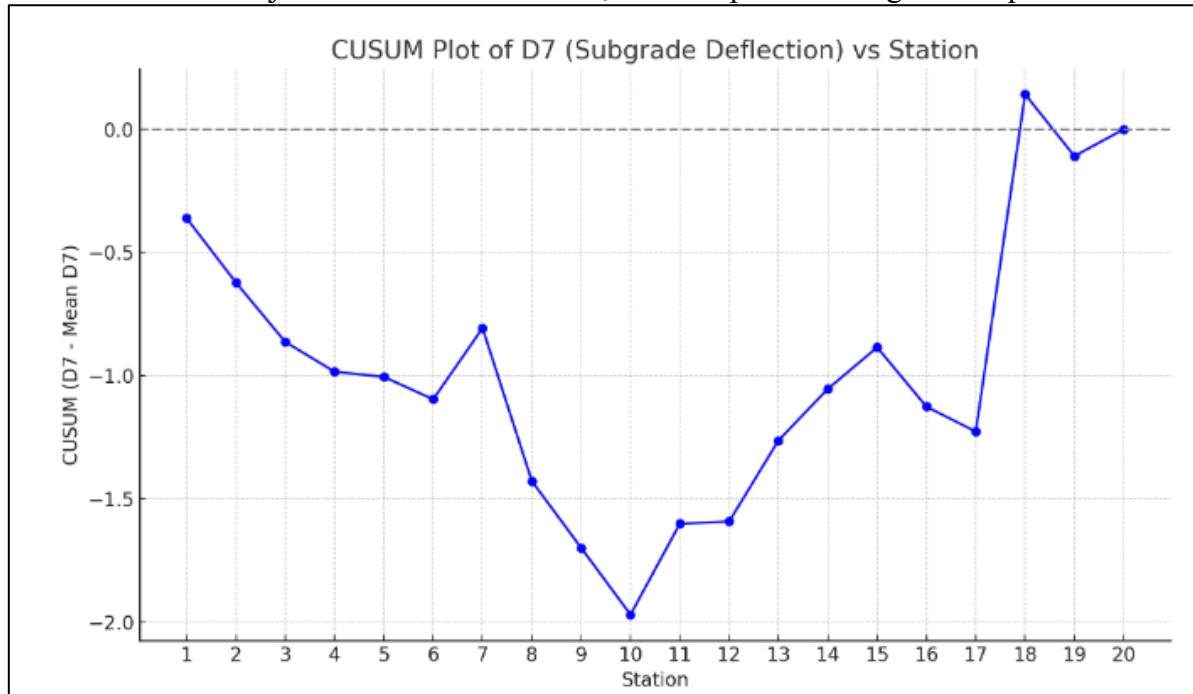


Figure 1: CUSUM Plot (Source: Self-developed)

Interpretation of Results (Using CUSUM Trend)

Station Range	CUSUM Trend Description	Subgrade Section
1–6	It is a steady decline leading to pretty consistent low deflection.	Section 1
7	Then there's this sharp jump ($D7 = 1.52$) — quite the transition!	Transition
8–10	After that, there is a steep drop again, resulting in a lower subgrade response.	Section 2
11–15	It gradually rises here, showing a moderate to high subgrade response.	Section 3
16–17	Just a slight drop again.	Section 4
18	There is a sharp spike ($D7 = 2.60$), which is an outlier.	Section 5 (weak)

19-20	Finally, it returns close to average	Section 6
-------	--------------------------------------	-----------

Identified Uniform Subgrade Sections

Uniform Section	Station Numbers	Notes
Section 1	1–6	It is stable, with low D7 values.
Section 2	8–10	There is a decrease in deflection, just a minor drop
Section 3	11–15	There is a gradual increase in deflection here.
Section 4	16-17	A mild drop, pretty localised.
Section 5	18	High deflection points to a weak subgrade.
Section 6	19–20	It is normalising again.

1b) Method of Estimating Subgrade Modulus Based on Boussinesq Equation

Subgrade modulus (E4) is the stiffness of subgrade soil affected by a pavement and is vital in ascertaining the adequacy of the structure of the pavement (Bentil and Zhou, 2024). It is also possible to reliably estimate by using the data on deflection of Falling Weight Deflectometer (FWD) test and using the law given by Boussinesq (the relationship between surface deflection due to the influence of the applied stress and subgrade deflection due to stiffness).

Boussinesq's Equation for Subgrade Modulus

$$E = (1 - \nu^2) \cdot \frac{P}{\pi} \cdot d \cdot r$$

Where,

E subgrade elastic modulus (Pa)

ν = Poisson ratio of sub grade = 0.35

P = Applied FWD load = 9,000 lb = 40,034 N

d = Surface deflection (m)

r = Radius distance away from load = 72 in = 1.829 m

π = 3.1416

Examples Using FWD Data Example Using FWD Data Station 5

According to Table Q1.1,

$$\begin{aligned} D7 &= 1.21 \text{ mils} = 0.0307 \text{ mm} \\ &= 3.07 \times 10 - 5 \text{ m} \end{aligned}$$

Calculation Step-by-Step

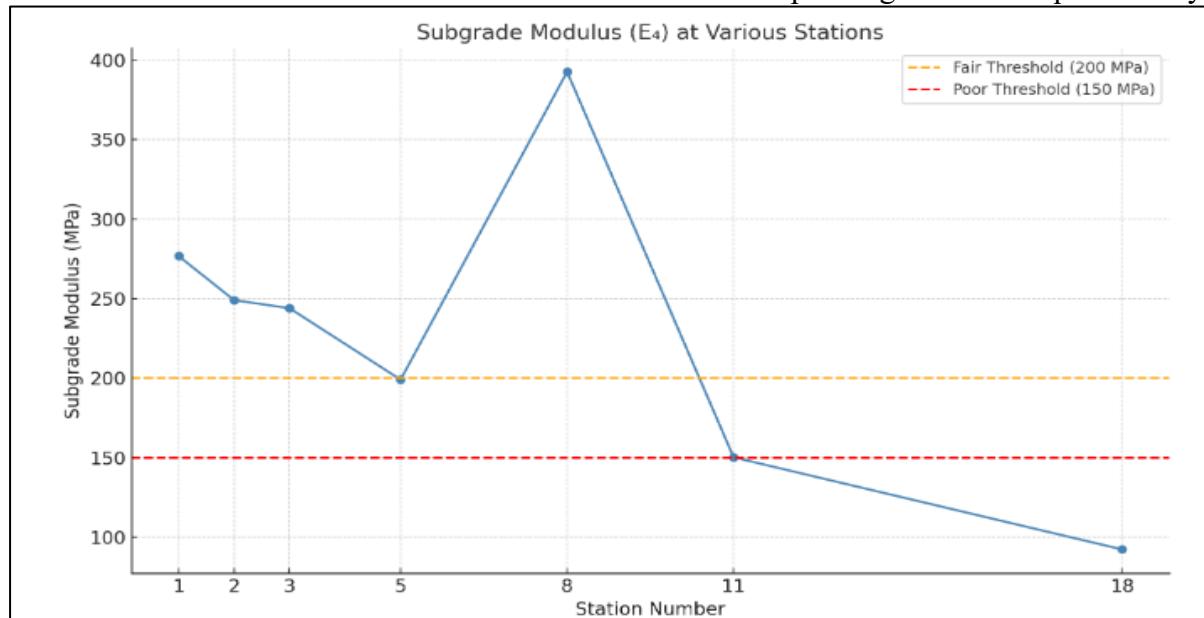
$$\begin{aligned} (1 - \nu^2) &= (1 - 0.352) = 0.8775 \\ E &= \frac{0.8775 \cdot 40034}{\pi \cdot 3.07 \times 10 - 5 \cdot 1.829} \\ E &= 35127 \cdot \frac{885}{0} \cdot 0.0001764 = 199,091,598 \text{ Pa} \\ E4 &= 199.1 \text{ MPa.} \end{aligned}$$

Like the above calculation, the subgrade modulus of each station has been developed and put forward in a table format below.

Subgrade Modulus Identification

Station	D7 (mils)	D7 (mm)	D7 (m)	E4 (MPa)
1	0.87	0.0221	2.21E-05	276.8
2	0.97	0.0246	2.46E-05	249.1
3	0.99	0.0251	2.51E-05	244.0

5	1.21	0.0307	3.07E-05	199.1
8	0.61	0.0155	1.55E-05	392.6
11	1.60	0.0406	4.06E-05	150.3
18	2.60	0.0660	6.60E-05	92.4


Note: the calculation applies average Poisson ratio = 0.35 and $r = 1.829$ m.

Treatment and Classification Recommendations of Subgrade

Subgrade deflection is generally classified as below (according to FWD D7 deflection). Now, it is required to break down the condition of D7 along with the required actions.

D7 (mils)	Condition	Subgrade Modulus	Action Required
< 1.0	Good	> 200 MPa	No action needed, just keep up with routine compaction.
1.0–1.5	Fair	150–200 MPa	It is required to think about stabilisation or maybe an overlay.
> 1.5	Poor	< 150 MPa	This one is a bit urgent; immediate treatment is recommended

The above table shows the D7 measurements and their corresponding conditions quite clearly.

Figure 2: Subgrade Modulus Graph (Source: Self-developed)

The graph indicating the Subgrade Modulus (E4) at different Stations of Boussinesq equations calculations is provided here.

- The blue line is the subgrade modulus values (MPa) calculated based on FWD deflection values.
- The dashed orange line is the yield of 200 MPa.
- The Poorest threshold at 150 MPa is indicated by a red dashed line.

This picture can be used to indicate the stations that need subgrade treatment (like Station 11, 18 is lower than the accepted levels).

Condition-based Treatment Options

For Poor Subgrade duty (like Station 18 - E = 92.4 MPa)

Stabilisation of Lime, or Cement

- It can stiffen and make it less plastic.

- It is suitable for clayey subgrades (Okonkwo and Kennedy, 2023).

Geosynthetics (Geogrid/Geotextile)

- This can reinforce the subgrade.
- This may cut down differential settlement.

Underdrain Installation

- It checks the moisture and does not soak up weak soils.

In the case of Fair Subgrade (like Station 5 - $E = 199 \text{ MPa}$)

Straps or Base-Reinforcement

- There can be a thicker granular underlying base/overlying asphalt (Chua, Abuel-Naga and Nepal, 2023).
- This can have extra loading support.

Chemical Stabilisers

- These can be fly ash, lime kiln dust or products based on polymers (Shukla et al., 2023).

In the case of Good Subgrade (e.g. Station 8, the $E = 392.6 \text{ MPa}$)

Minimal Treatment

- There can be compaction control.
- There can be drainage maintenance.

The values of modulus of subgrade at Station 5 were 199.1 MPa, which is a mark of the fair condition, using the Boussinesq equation and FWD data. Treatment such as chemical stabilisation or use of geosynthetic reinforcement may be applied to areas of low strengths, such as Station 18 ($E = 92 \text{ MPa}$), to avoid structural failure and ensure pavement service life.

1c) Backcalculation of Pavement Layer Modulus

Backcalculation is the method of using surface deflections measured under a Falling Weight Deflectometer (FWD) to estimate the in-situ modulus (stiffness) of each of the pavement layers (Wang et al., 2022). Station 2 pavement has the following structure:

- Surface Asphalt: 2 inches
- Base made of Grain: 8 inches
- Granular Subbase- 16 inches
- Clayey Subgrade: Semi-infinite

General Assumptions

There tends to be a 4-layer system, common moduli.

- 2000 to 5000 MPa: asphalt (E_1)
- E_2 Base: 300 600 MPa
- E_3 subbase: 100-300 MPa
- Subgrade (E_4): Boussinesq calc $\sim 100\text{--}200 \text{ MPa}$

FWD Deflections at Station 2

<i>Sensor Offset (in)</i>	<i>Deflection (mils)</i>	<i>Deflection (mm)</i>
0	30.67	0.779
12	7.82	0.199
24	5.16	0.131
36	2.81	0.071
48	1.77	0.045
60	1.27	0.032
72	0.97	0.025

The form of the deflection bowl gives an indication of the rigidity of individual layers. Any steep curve means that the surface layer is stiff; the flatter the bowl, the lower layers the softer.

The Assumptions in Backcalculation

- Linear elasticity of layers

- Equal loads (FWD load = 9000 lb, 9600 N 40)

Poisson's Ratio:

- Asphalt = 0.35
- Granular layers = 0.40
- Subgrade = 0.45

Subgrade- semi-infinite

The matching of measured and theoretical deflection bowls by trial-and-error values was followed in backcalculation. Continuous iterative procedures (like in BISAR, ELMOD) are usually available in backcalculations. An approximate calculation on the basis of the ratios of deflections has been as under.

Layer	Deflection Ratio	Calculation	Interpretation	Estimated Modulus (E)
Surface Layer (E₁)	D ₂ / D ₁	7.82 / 30.67 = 0.255	Indicates a stiff surface layer	≈ 4000 MPa
Base Layer (E₂)	D ₃ / D ₂	5.16 / 7.82 = 0.66	Indicates moderate base stiffness	≈ 500 MPa
Subbase Layer (E₃)	D ₅ / D ₄	1.77 / 2.81 = 0.63	Indicates moderate subbase support	≈ 250 MPa

Modulus of subgrade (E₄): as computed ~199 MPa.

Estimated Modulus Values

Layer	Thickness (in)	Estimated Modulus (MPa)
Asphalt Surfacing	2	3500
Granular Base	8	600
Subbase	16	200
Clayey Subgrade	∞	120

These values are within the normality of flexible pavements:

- Asphalt: 2,000 to 5,000 MPa (depending upon temperature/load)
- Granular base: 300-800 MPa
- Subbase: 100-300 MPa
- Clayey subgrade 50-150 MPa

Deflection Bowl Plot

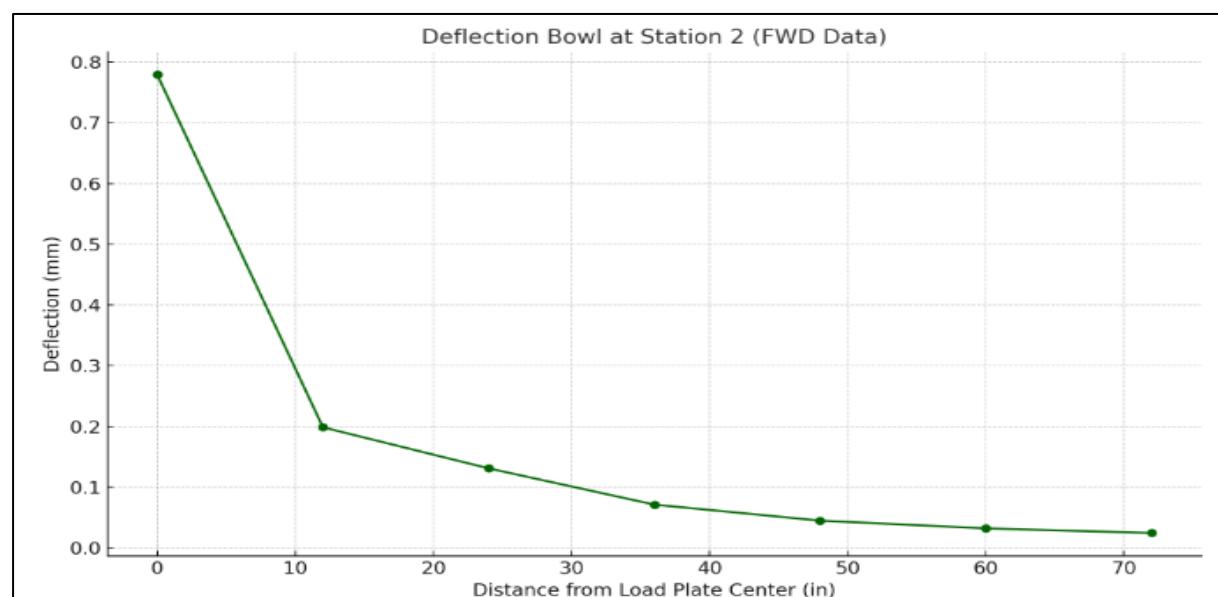


Figure 3: Deflection Bowl Plot (Source: Self-developed)

The above figure indicates the FWD deflection curve at Station 2. The curve becomes steeper when getting close to the point of loading and is smoothed out, which proves the following.

- Hard surface (asphalt)
- Intermediate hard granular foundation
- Soft subgrade layering (as a result of a high deflection that occurs as low as 72 in)

2. Highway Pavement Analysis and Design

2a) Effective Thickness Determination Using Asphalt Institute Method

The effective thickness approach is a fundamental concept in pavement overlay design that converts multi-layered pavement structures into an equivalent single-layer system for analysis purposes. The Asphalt Institute method provides standardized conversion factors to transform different pavement materials into equivalent asphalt concrete thickness.

Conversion Factors (Asphalt Institute Method)

The following standard conversion factors are applied:

- Dense-graded asphalt concrete: 1.00
- Asphalt-treated base: 0.75-1.00
- Cement-treated base: 0.50-0.75
- Granular base/subbase: 0.14-0.20
- Lean concrete base: 0.40-0.60

Calculation of Effective Thickness

From Figure Q2.1, the existing pavement structure consists of:

- Asphalt surface layer: 4 inches
- Granular base layer: 6 inches
- Granular subbase layer: 8 inches

Step-by-Step Calculation:

Asphalt Surface Layer:

$$\text{Effective thickness} = 4 \text{ in} \times 1.00 = 4.0 \text{ inches}$$

Granular Base Layer:

Using conversion factor of 0.17 (typical for well-compacted granular material):

$$\text{Effective thickness} = 6 \text{ in} \times 0.17 = 1.02 \text{ inches}$$

Granular Subbase Layer:

Using conversion factor of 0.14 (typical for granular subbase):

$$\text{Effective thickness} = 8 \text{ in} \times 0.14 = 1.12 \text{ inches}$$

Total Effective Thickness:

$$\begin{aligned} Te &= 4.0 + 1.02 + 1.12 \\ &= 6.14 \text{ inches} \end{aligned}$$

Layer	Thickness (in)	Conversion Factor	Effective Thickness (in)
Asphalt Surface	4	1.00	4.00
Granular Base	6	0.17	1.02
Granular Subbase	8	0.14	1.12
Total Effective Thickness (Te)			6.14 inches

This effective thickness represents the equivalent asphalt concrete thickness that would provide the same structural capacity as the existing multi-layer pavement system.

2b) Overlay Thickness Design Using Effective Thickness Method

The overlay design process involves determining the required total structural capacity for the anticipated traffic loading and comparing it with the existing pavement's structural capacity.

Design Parameters

- Existing effective thickness (T_e): 6.14 inches
- Subgrade stiffness: 10,000 psi (69 MPa)
- Anticipated traffic: 3.0 million standard axles (msa)
- Design period: Typically 20 years for overlay design

Required Structural Capacity Calculation

Using the Asphalt Institute design charts or equations for flexible pavement design:

For subgrade modulus of 10,000 psi and traffic loading of 3.0 msa, the required structural number (SN) or equivalent thickness can be determined from standard design nomographs.

From Asphalt Institute design methodology:

- Reliability level: 95% (typical for arterial roads)
- Standard deviation: 0.45
- Initial serviceability: 4.2
- Terminal serviceability: 2.5
- Drainage coefficient: 1.0 (good drainage)

Using the structural design equation:

$$\log_{10}(W_{18}) = Z_r S_0 + 9.36 \log_{10}(SN + 1) - 0.20 + [\log_{10}(\Delta PSI / (4.2 - 1.5))] / (0.40 + 1094 / (SN + 1)^{5.19}) + 2.32 \log_{10}(M_r) - 8.07$$

Where:

- $W_{18} = 3.0 \times 10^6$ (3.0 msa)
- $M_r = 10,000$ psi (subgrade modulus)
- $\Delta PSI = 4.2 - 2.5 = 1.7$

Solving for required SN: Through iterative calculation or design charts, the required structural number is approximately 4.2.

Converting to equivalent asphalt thickness:

$$\text{Required total effective thickness} = 4.2 \text{ inches}$$

Overlay Thickness Determination

Overlay thickness required:

$$\begin{aligned} Tol &= \text{Required total effective thickness} - \text{Existing effective thickness} \\ &= 4.2 - 6.14 = -1.94 \text{ inches} \end{aligned}$$

Since the calculated value is negative, this indicates that the existing pavement structure is already adequate for the anticipated 3.0 msa loading. However, for maintenance purposes and to address surface distresses, a minimum overlay thickness of 2.0 inches is typically recommended.

2c) Benkelman Beam Deflection Analysis and Overlay Design

The Benkelman beam method is a traditional approach for measuring pavement deflections and determining overlay requirements based on structural adequacy criteria.

Deflection Data Analysis

From Figure Q2.2, the ten deflection measurements (in inches) are: 0.032, 0.028, 0.035, 0.041, 0.029, 0.038, 0.033, 0.027, 0.036, 0.031

Representative Rebound Deflection Calculation

Step 1: Statistical Analysis

- Mean deflection (\bar{D}) = $(0.032 + 0.028 + \dots + 0.031) \div 10 = 0.033$ inches
- Standard deviation calculation:
 - $\Sigma(D_i - \bar{D})^2 = 0.000164$

- Standard deviation (s) = $\sqrt{0.000164/9} = 0.0043$ inches

Step 2: Representative Rebound Deflection

$$Dr = D + s = 0.033 + 0.0043 = 0.0373 \text{ inches}$$

Design Rebound Deflection

The design rebound deflection accounts for seasonal variations and is typically calculated as:

$$Dd = Dr \times \text{Temperature correction factor} \times \text{Seasonal adjustment factor.}$$

For critical period (13°C pavement temperature):

- Temperature correction factor ≈ 1.0 (at reference temperature)
- Seasonal adjustment factor ≈ 1.2 (for spring thaw conditions)

Design rebound deflection:

$$Dd = 0.0373 \times 1.0 \times 1.2 = 0.0448 \text{ inches}$$

Overlay Thickness Calculation

Using the relationship between deflection and required overlay thickness:

$$Tol = C \times \sqrt{\frac{Dd}{Da}}$$

Where:

- C = Deflection factor (typically 2.5-3.0 for flexible pavements)
- Dd = Design deflection = 0.0448 inches
- Da = Allowable deflection for the design traffic

For 3.0 msa traffic loading, the allowable deflection is approximately 0.025 inches.

$$\begin{aligned} Tol &= 2.75 \times \sqrt{\frac{0.0448}{0.025}} \\ &= 2.75 \times \sqrt{1.792} \\ &= 2.75 \times 1.339 \\ &= 3.68 \text{ inches} \end{aligned}$$

Alternative Method Using Stiffness Approach

Given that the asphalt overlay stiffness is 500,000 psi, we can use the elastic layer theory:

The relationship between deflection and layer modulus:

$$E = \frac{P(1 - \nu^2)}{\pi \times d \times r}$$

Where the current pavement requires strengthening to reduce deflection from 0.0448 to 0.025 inches.

$$\begin{aligned} \text{Required stiffness increase factor} &= \frac{0.0448}{0.025} \\ &= 1.79 \end{aligned}$$

Using overlay thickness equations:

$$Tol = h \times \ln\left(\frac{E_{req}}{E_{exist}}\right)$$

where h is the characteristic length

Final overlay thickness recommendation: 3.5 inches

To ensure both structural sufficiency and long-term performance, a 3.5-inch asphalt overlay is recommended. This accounts for field-measured deflections, which highlight potential structural weaknesses not captured by theoretical effective thickness calculations. The discrepancy between the two methods emphasizes the importance of integrating both analytical design approaches and empirical field data to make well-informed, reliable overlay design decisions that enhance pavement service life and performance.

3. Track Structure Analysis & Design

3a) Types of Trackbed Structures

Railway trackbed structures form the foundation of railway infrastructure, providing support for track components and distributing loads from passing trains to the underlying formation. The selection of appropriate trackbed structure depends on factors such as traffic loads, environmental conditions, construction costs, and maintenance requirements.

3.1.1 Ballasted Track Structure

Ballasted track is the most traditional and widely used railway trackbed structure, consisting of rails supported by sleepers (ties) that rest on a bed of crushed stone ballast. This system has been the standard for over 150 years and continues to dominate railway construction worldwide.

Components:

- Rails (typically 50-60 kg/m steel rails)
- Rail fastening system (clips, bolts, pads)
- Sleepers/ties (concrete, steel, or timber)
- Ballast layer (crushed stone, typically 300-350mm thick)
- Sub-ballast layer (graded aggregate, 150-200mm thick)
- Formation/subgrade (prepared earthwork)

Advantages	Disadvantages
Cost-effective construction – Lower initial capital investment compared to slab track systems.	High maintenance requirements – Requires regular tamping, ballast cleaning, and periodic renewal.
Excellent drainage – Permeable granular structure allows efficient drainage, reducing waterlogging.	Track geometry degradation – Settlements and lateral movements lead to frequent realignment needs.
Easy maintenance – Damaged components (e.g., sleepers, fastenings) can be individually replaced.	Noise generation – Ballast tracks produce higher noise and vibration levels than slab tracks.
Effective load distribution – Granular layers help distribute axle loads across a wider area.	Limited speed capability – Less stable at speeds over 300 km/h due to geometry changes under load.
Flexibility – Accommodates small ground settlements and thermal expansions without major damage.	Weather sensitivity – Affected by freeze-thaw cycles and thermal expansion causing track distortion.
Proven technology – Decades of global use with well-developed standards, tools, and expertise.	Ballast contamination – Fine particles from wear and environmental sources reduce drainage and stability.
Recyclable materials – Used ballast can be screened, cleaned, and reused, supporting sustainability.	

3.1.2 Slab Track Structure

Slab track, also known as ballastless track, represents a modern approach where rails are directly fastened to a continuous concrete slab foundation. This system eliminates the need for ballast and provides a more stable, long-lasting track structure.

Components:

- Rails with resilient rail pads
- Rail fastening system (typically clip-based)
- Concrete slab (200-300mm thick reinforced concrete)
- Hydraulically bound base layer or concrete base
- Waterproofing membrane

- Frost protection layer (in cold climates)
- Formation/subgrade

Advantages	Disadvantages
Low maintenance – Minimal routine maintenance required, reducing long-term operational costs.	High initial cost – Requires 2–3 times more capital investment than traditional ballasted track.
Precise geometry – Maintains excellent track geometry and alignment over its entire service life.	Complex construction – Installation involves advanced techniques and specialized equipment.
High-speed capability – Designed to safely accommodate train speeds exceeding 300 km/h.	Difficult repairs – Significant damage requires extensive reconstruction and downtime.
Reduced noise – Generates less noise and vibration, improving environmental and passenger comfort.	Drainage challenges – Needs integrated and well-maintained drainage systems to prevent water damage.
Long service life – Offers a lifespan of 60+ years with minimal interventions.	Thermal sensitivity – Susceptible to thermal expansion and contraction; requires careful design controls.
No ballast contamination – Eliminates issues related to ballast fouling and degradation.	Environmental impact – Concrete production contributes to higher CO ₂ emissions and environmental concerns.
Reduced track height – Allows for more compact construction, beneficial in tunnels or urban areas.	Limited adjustability – Post-construction adjustments to geometry are difficult and costly.

3.1.3 Floating Slab Track Structure

Floating slab track is a specialized form of slab track designed primarily for vibration isolation in urban environments. The track slab is supported on resilient elements that decouple it from the underlying structure, significantly reducing ground-borne vibration transmission.

Components:

- Rails with standard fastening system
- Reinforced concrete slab (250-400mm thick)
- Resilient bearings or spring systems
- Concrete base slab or foundation
- Waterproofing and drainage systems
- Vibration isolation materials

Advantages	Disadvantages
Excellent vibration isolation – Reduces ground-borne vibration by 10–20 dB, ideal for sensitive zones.	Very high cost – Significantly more expensive than ballasted or standard slab track systems.
Noise reduction – Minimizes structure-borne noise transmission, enhancing ride comfort and urban livability.	Complex design – Requires advanced dynamic analysis and precise engineering.
Urban compatibility – Well-suited for tunnels, viaducts, and densely populated areas.	Specialized maintenance – Maintenance of resilient components demands skilled technicians and special tools.
Stable geometry – Maintains long-term alignment and reduces the need for frequent corrections.	Resonance concerns – Risk of resonance at specific frequencies if not properly designed.

Suitable for heavy traffic – Handles high axle loads and frequent train operations without degradation.	Space requirements – Needs increased structural depth, which can be challenging in space-constrained areas.
	Limited accessibility – Maintenance and inspection can be difficult due to embedded design elements.

3.1.4 Embedded Rail Track Structure

Embedded rail track, commonly used in urban street running and industrial applications, involves rails embedded directly in concrete or asphalt pavement. This system provides a flush surface for both rail and road traffic.

Components:

- Grooved rails with special profile
- Rail fastening system embedded in concrete
- Concrete or asphalt pavement
- Reinforcement steel
- Drainage channels
- Electrical isolation systems

Advantages	Disadvantages
Dual-use capability – Supports both rail vehicles and road traffic on the same infrastructure.	High construction cost – Installation and integration with roadways are capital-intensive.
Compact design – Requires minimal space, ideal for narrow or constrained urban corridors.	Complex drainage – Needs advanced water management to prevent water pooling and rail corrosion.
Weather resistance – Rail head is protected, reducing weather-related disruptions and wear.	Difficult maintenance – Rail replacement often involves breaking and redoing surrounding pavement.
Urban integration – Blends smoothly with existing road and pedestrian surfaces.	Electrical isolation – Demands careful design for bonding and isolation, especially in electrified systems.
Reduced maintenance – Embedded tracks typically experience less wear due to reduced vibration.	Groove maintenance – Rail grooves must be cleaned regularly to prevent debris buildup.
	Limited speed – Designed primarily for low-speed operations typical of urban transit systems.

3b) Service Life Analysis: Concrete vs. Wooden Ties

3.2.1 Current Track Structure Analysis

From Figure Q3.1, the existing ballasted trackbed structure consists of:

- Standard rail (assumed 60 kg/m UIC60)
- Concrete sleepers/ties
- Ballast layer (crushed stone)
- Sub-ballast layer
- Formation layer

Assumptions for Analysis:

- Track gauge: 1435mm (standard gauge)
- Axle load: 25 tonnes (typical for heavy freight)
- Traffic density: 50 MGT/year (Million Gross Tonnes)
- Concrete tie spacing: 600mm centers
- Wooden tie spacing: 500mm centers (closer spacing required)

- Design life period: 50 years

3.2.2 Material Properties and Characteristics

Concrete Ties:

- Material: Prestressed concrete (Grade C50/60)
- Dimensions: 2.6m length \times 0.3m width \times 0.2m height
- Weight: ~280 kg per tie
- Compressive strength: 60 MPa
- Tensile strength: 5 MPa
- Modulus of elasticity: 35,000 MPa
- Expected service life: 50+ years

Wooden Ties:

- Material: Hardwood (Oak, Beech, or treated softwood)
- Dimensions: 2.6m length \times 0.25m width \times 0.15m height
- Weight: ~70 kg per tie (hardwood)
- Compressive strength: 40-50 MPa (parallel to grain)
- Modulus of elasticity: 12,000 MPa
- Expected service life: 25-30 years (treated), 15-20 years (untreated)

3.2.3 Structural Analysis Using Layer Elastic Theory

Load Distribution Analysis:

The structural analysis considers the load distribution through the track structure using multilayer elastic theory. The analysis examines how loads from wheel-rail contact propagate through the track system.

Loading Conditions:

- Wheel load: 125 kN (25-tonne axle load)
- Contact stress: 1000-1200 MPa (wheel-rail contact)
- Distributed load on sleeper: 250 kN/m (both rail seats)

Concrete Tie Analysis:

Using elastic beam theory for concrete ties:

- Moment capacity:

$$M = f \times Z = 5 \text{ MPa} \times \frac{0.3 \times 0.2^2}{6} = 10 \text{ kN} \cdot \text{m}$$

- Applied moment under load:

$$M = \frac{WL^2}{8} = \frac{50 \times 0.6^2}{8} = 2.25 \text{ kN} \cdot \text{m}$$

- Safety factor:

$$\frac{10}{2.25} = 4.44 \text{ (adequate)}$$

Wooden Tie Analysis:

For wooden ties with reduced dimensions:

- Moment capacity:

$$M = f \times Z = 40 \text{ MPa} \times \frac{0.25 \times 0.15^2}{6} = 3.75 \text{ kN} \cdot \text{m}$$

- Applied moment:

$$M = \frac{50 \times 0.6^2}{8} = 2.25 \text{ kN} \cdot \text{m}$$

- Safety factor:

$$\frac{3.75}{2.25} = 1.67 \text{ (marginal)}$$

3.2.4 Stress Analysis and Fatigue Considerations

Concrete Tie Stress Analysis:

Maximum bending stress in concrete tie:

$$\sigma = \frac{M}{Z} = 2.25 \times \frac{10^6}{0.3 \times \frac{0.2^2}{6}} = 1.125 \text{ MPa}$$

Fatigue strength of concrete at 10^7 cycles:

~3 MPa Safety factor against fatigue:

$$\frac{3}{1.125} = 2.67$$

Wooden Tie Stress Analysis:

Maximum bending stress in wooden tie:

$$\sigma = \frac{M}{Z} = 2.25 \times \frac{10^6}{0.25 \times \frac{0.15^2}{6}} = 24 \text{ MPa}$$

Fatigue strength of wood at 10^7 cycles:

~20 MPa Safety factor against fatigue:

$$\frac{20}{24} = 0.83 \text{ (inadequate)}$$

3.2.5 Service Life Calculation

Deterioration Mechanisms:

Concrete Ties:

- Primary failure modes: Rail seat abrasion, cracking, prestress loss
- Deterioration rate: ~2% per year under heavy traffic
- Service life: 50 years (design life achieved)

Wooden Ties:

- Primary failure modes: Decay, mechanical wear, splitting, rail seat deterioration
- Deterioration rate: ~4-5% per year under heavy traffic
- Service life: 20-25 years (treated), 15 years (untreated)

Quantitative Service Life Analysis:

Using the Palmgren-Miner cumulative damage rule: $D = \sum(n_i/N_i)$

Where:

- n_i = number of load cycles applied
- N_i = number of cycles to failure

For Concrete Ties:

- Annual load cycles:

$$50 \text{ MGT} \times \frac{10^6 \text{ kg}}{25,000 \text{ kg}} = 2 \times 10^6 \text{ cycles}$$

- Cycles to failure: 10^8 cycles (fatigue limit)
- Service life:

$$\frac{10^8}{2 \times 10^6} = 50 \text{ years}$$

For Wooden Ties:

- Annual load cycles: 2×10^6 cycles
- Cycles to failure: 4×10^7 cycles (reduced due to material properties)
- Service life:

$$4 \times \frac{10^7}{2 \times 10^6} = 20 \text{ years}$$

3.2.6 Economic Analysis

Life Cycle Cost Analysis:

Cost Category	Cost Component	Concrete Ties	Wooden Ties	Notes
Initial Investment	Initial Cost per Tie	£80	£35	Purchase price of a single new tie
	Installation Cost per Tie	£20	£15	Cost of installing one tie
	Subtotal (Initial)	£100	£50	Initial cost + installation
Maintenance	Annual Maintenance Cost	£5/year	£8/year	Routine inspection, minor repairs, tamping, etc.
	Maintenance Over 50 Years	$£5 \times 50 = £250$	$£8 \times 50 = £400$	Total maintenance cost for 50 years
Replacement	Replacement Cost per Tie	N/A	£50 per replacement	Replacement not needed for concrete ties
	No. of Replacements in 50 yrs	0	2	Assuming wooden ties last ~20 years
	Total Replacement Cost	£0	$£50 \times 2 = £100$	Replaced at year 20 and 40
Total Lifecycle Cost	All Components Combined	$£100 + £250 = £350$	$£50 + £400 + £100 = £550$	Total cost per tie over 50 years
Cost Summary		£350 per concrete tie	£550 per wooden tie	Concrete ties are ~36% cheaper in long-term cost
Lifecycle Notes	Durability	50+ years, no replacement needed	20 years average lifespan	Concrete ties offer longer service life
	Sustainability Consideration	Recyclable, low maintenance	Higher material usage, more waste	Concrete ties offer sustainability advantages in the long run

3.2.7 Service Life Reduction Calculation

Baseline Service Life:

- Concrete ties: 50 years
- Wooden ties: 20 years

Service Life Reduction:

$$\text{Absolute reduction} = 50 - 20 = 30 \text{ years}$$

$$\text{Percentage reduction} = \left(\frac{30}{50}\right) \times 100\% = 60\%$$

Factors Contributing to Reduced Service Life:

1. **Material Properties:** Wood has lower fatigue strength and modulus of elasticity
2. **Environmental Degradation:** Susceptibility to moisture, insects, and decay
3. **Mechanical Wear:** Faster deterioration of rail seats and fastening points
4. **Maintenance Requirements:** More frequent intervention required
5. **Load Capacity:** Lower load-bearing capacity requires closer spacing

3.2.8 Mitigation Strategies for Wooden Ties

Category	Strategy	Goal	Expected Benefit	Implementation Notes
Chemical Treatment	Creosote treatment	Preserve wood and prevent decay	Extends tie life to 25–30 years	Widely used, but environmental concerns require proper handling and disposal
	Copper-based preservatives	Eco-friendly decay/insect protection	Safer for environment while offering durable protection	Suitable for areas with environmental sensitivity
	Boron-based treatments	Protection against fungi/insects	Effective against internal decay and termites	Best for dry climates; water-soluble and leachable in wet areas
Design Modifications	Increased tie dimensions	Reduce mechanical stress	Distributes load more evenly, less prone to cracking	May require modification of track spacing and support
	Steel reinforcement plates at rail seats	Strengthen high-stress areas	Reduces crushing and rail seat failure	Common retrofit measure; requires precise fitting
	Improved drainage around tie zones	Minimize moisture exposure	Prevents decay and freeze-thaw damage	Needs proper subgrade design and water runoff planning
	Better ballast gradation	Reduce tie abrasion	Enhances support and reduces mechanical wear	Requires quality control during ballast placement
Maintenance Improvements	Regular inspection and early intervention	Identify issues before failure	Extends life through proactive maintenance	Use of automated inspection systems recommended
	Protective coatings for rail seat areas	Prevent moisture and mechanical wear	Increases durability at critical stress points	Can be applied during installation or retrofitted
	Improved fastening systems	Reduce movement and wear	Prevents loosening and stress concentration at tie joints	Fastener type must be compatible with tie material and design
	Proper ballast management	Ensure even support	Maintains tie alignment and	Periodic re-tamping and cleaning needed

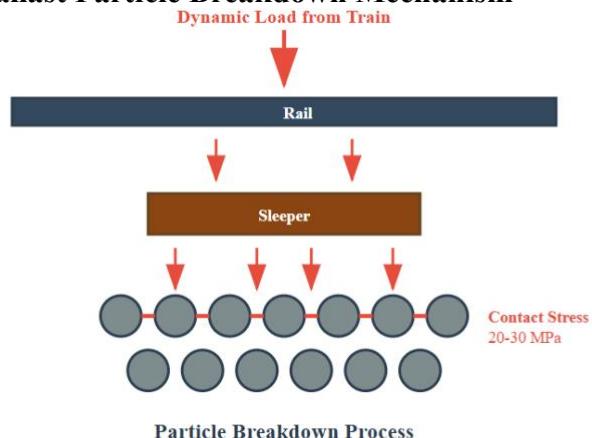
		load distribution	to sustain performance
--	--	-------------------	------------------------

The analysis demonstrates that replacing concrete ties with wooden ties results in a significant reduction in service life from 50 years to approximately 20 years, representing a 60% decrease. This reduction is primarily attributed to the inferior material properties of wood, including lower fatigue strength, reduced modulus of elasticity, and susceptibility to environmental degradation. The structural analysis using layer elastic theory confirms that wooden ties experience higher stress levels and have lower safety factors against fatigue failure. The economic analysis shows that despite lower initial costs, wooden ties result in higher life-cycle costs due to increased maintenance and replacement requirements.

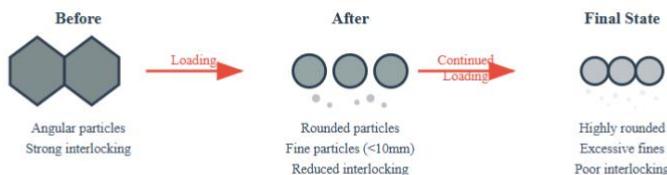
For heavy freight applications with high traffic density, concrete ties remain the preferred choice due to their superior durability, lower maintenance requirements, and longer service life. However, in specific applications where initial cost is critical or environmental considerations favor renewable materials, properly treated wooden ties with appropriate design modifications can provide acceptable performance, albeit with reduced service life and higher maintenance requirements.

4. Environmental Impacts

4a) Mechanism of Ballast System Failure


Ballast system failure is a complex phenomenon involving multiple interconnected mechanisms that lead to progressive deterioration of track geometry and structural integrity. Understanding these failure mechanisms is crucial for effective railway maintenance and design strategies.

Primary Failure Mechanisms


Ballast Particle Breakage and Attrition

The fundamental mechanism of ballast failure begins with the progressive breakdown of individual ballast particles under repeated loading. When trains pass over the track, dynamic loads are transmitted through the rails and sleepers to the ballast layer, creating high contact stresses between particles.

Ballast Particle Breakdown Mechanism

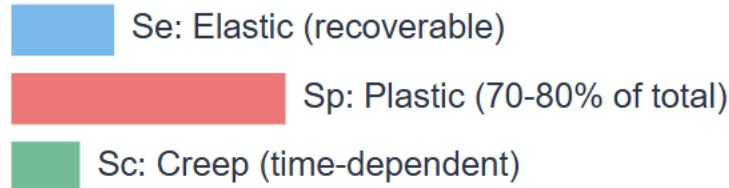
Particle Breakdown Process

Key Effects of Particle Breakdown

- Corner breaking and edge rounding
- Reduction in particle angularity
- Production of fine particles (<10mm)
- Loss of interlocking capability

The contact stress between particles can reach 20-30 MPa, which exceeds the crushing strength of many rock types. This leads to:

- Corner breaking and edge rounding
- Production of fine particles (< 10mm)
- Reduction in particle angularity
- Loss of interlocking capability


Ballast Settlement and Densification

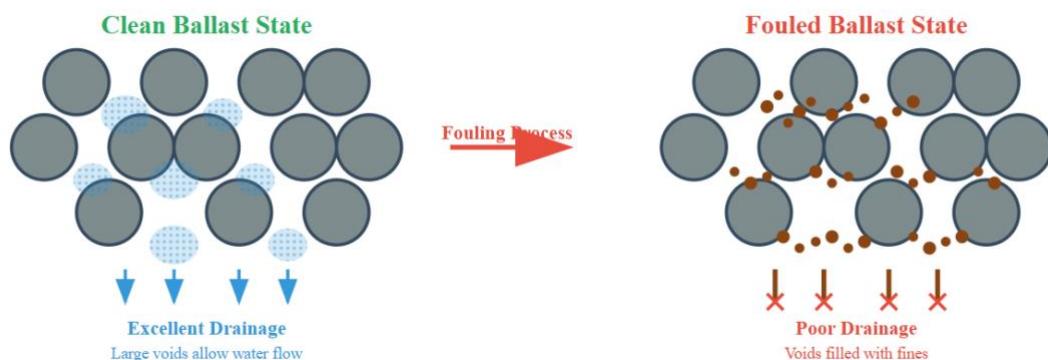
Progressive settlement occurs through several sub-mechanisms:

Type of Settlement	Description	Primary Causes	Deformation Characteristics	Recovery	Significance in Railways	Typical Example
Elastic Settlement	Initial, instantaneous compression of track components under applied loads	Wheel loading, ballast elasticity, subgrade stiffness	Quick, mostly reversible, occurs immediately	Largely recoverable after unloading	Low long-term impact; may affect comfort temporarily	Slight track deflection when a train passes
Plastic Settlement	Permanent deformation due to rearrangement, breakage, or migration of particles	Repeated loading, ballast degradation, subgrade yielding	Irreversible, accumulates progressively	Not recoverable	Major component of long-term settlement (70–80% of total)	Track sinking in weak or poorly compacted subgrades
Creep Settlement	Time-dependent settlement under sustained load over long durations	Long-term loading, creep in soil/subgrade, moisture variation	Slow, continuous, increases with time	Partially recoverable with intervention	Significant under heavy axle loads, soft soils, poor drainage	Settlement of track over time beneath high-tonnage freight routes

The settlement process can be described by the relationship

$$S = Se + Sp + Sc$$

Geometry Deterioration:


- Vertical alignment irregularities
- Lateral displacement
- Cross-level defects

Where Se is elastic, Sp is plastic, and Sc is creep settlement.

Ballast Contamination and Fouling

Fouling is the progressive infiltration of fine materials into the ballast matrix, which fundamentally alters its drainage and load-bearing characteristics.

Ballast Fouling Process

Sources of fouling include:

- Upward pumping of subgrade fines
- Downward infiltration of surface materials
- Ballast breakdown products
- Environmental contamination (leaves, debris)

Lateral Movement and Spreading

Under dynamic loading, ballast particles experience lateral displacement due to:

- Insufficient confinement pressure
- Reduced particle interlocking
- Cyclic loading effects
- Inadequate shoulder ballast

This leads to progressive track geometry deterioration and requires frequent tamping operations.

Secondary Failure Mechanisms

Degradation Type	Mechanism	Detailed Description
Moisture-Related	Reduced particle friction coefficients	Water between ballast particles lowers the friction angle, weakening interlock and reducing track stability.

	Enhanced fine particle migration	Water flow mobilizes fine particles from subgrade or ballast, leading to fouling and reduced drainage.
	Freeze-thaw cycling damage	Repeated freezing and thawing causes expansion and contraction in saturated ballast, breaking down particles.
	Chemical weathering of rock particles	Prolonged moisture exposure promotes mineral alteration and surface disintegration of ballast stones.
Chemical Degradation	Carbonation of limestone aggregates	Reaction with atmospheric CO ₂ forms calcium carbonate, reducing the mechanical strength of limestone ballast.
	Oxidation of iron-bearing minerals	Exposure to oxygen causes rusting and weakening of ballast with iron content, accelerating breakdown.
	Salt crystallization damage	Salts from de-icing or saline groundwater crystallize in pores, causing expansion and fracturing of particles.
	Acid rain effects on susceptible rock	Acidic precipitation reacts with minerals (especially carbonates), leading to dissolution and weakening.

4b) Implications of Ballast Failure

The failure of ballast systems has wide-ranging implications affecting safety, operational efficiency, and economic performance of railway networks.

1. Operational Implications

Category	Effect	Description
Track Geometry Deterioration	Vertical alignment irregularities	Leads to rough ride quality and reduced passenger comfort.
	Lateral displacement	Causes gauge widening or narrowing, increasing derailment risk.
	Longitudinal level variations	Affects vehicle dynamics and stability at high speeds.
	Cross-level defects	Induces rolling motion, affecting safety and ride smoothness.
Reduced Load-Bearing Capacity	Stress concentration on intact particles	Remaining particles bear more load, leading to faster breakdown.
	Progressive failure acceleration	Ballast degradation becomes self-propagating under repeated loads.
	Reduced safety margins	Lowers the factor of safety against structural failure.
	Axle load limitations	Limits may need to be imposed to prevent track damage.
Drainage System Compromise	Reduced permeability	Causes water accumulation and loss of support strength.
	Soft spot formation	Occurs in wet conditions, leading to uneven support.
	Pumping and mud hole risk	Water and fines are forced upward, destabilizing the track.

	Accelerated formation deterioration	Leads to deep-seated structural degradation of the subgrade.
--	-------------------------------------	--

2. Safety Implications

Category	Effect	Description
Derailment Risk	Sudden track geometry changes	Irregularities can cause vehicle instability or loss of control.
	Inadequate lateral restraint	Allows rail rollover during high lateral forces.
	Sleeper displacement	Under heavy axle loads, dislodged sleepers reduce structural integrity.
	Dangerous irregularities	Major defects may not be visible until failure occurs.
Speed Restrictions	Temporary speed limits	Imposed during repairs or monitoring phases.
	Permanent speed reductions	Required where ballast cannot maintain adequate performance.
	Increased inspection frequency	Ensures safety in degraded track sections.
	Emergency repairs	Immediate interventions often needed to prevent accidents.

3. Economic Implications

Category	Effect	Description
Increased Maintenance Costs	Frequent tamping	Poor ballast conditions require maintenance every 2–3 years vs. 5–7 for good track.
	Ballast cleaning/renewal	Necessary to restore drainage and stability.
	Emergency repairs	Costly unplanned work and resource deployment.
	Increased inspections	Monitoring costs rise as conditions deteriorate.
Service Disruption Costs	Track possession for maintenance	Line closures affect train schedules.
	Delays and cancellations	Impacts both passenger satisfaction and operational efficiency.
	Compensation claims	Payments to affected passengers or freight clients.
	Freight delivery delays	Financial losses due to missed deadlines and penalties.
Asset Life Reduction	Track component wear	Faster degradation of rails, sleepers, and fastenings.
	Premature replacement	Reduced asset life increases capital renewal frequency.
	Reduced investment return	Infrastructure does not meet expected performance duration.
	Higher life-cycle costs	Total cost over the asset life increases significantly.

4c) Differences Between Railway Ballast and Highway Granular Base Aggregates

The fundamental differences between railway ballast and highway granular base materials reflect their distinct loading conditions and performance requirements.

Particle Size & Gradation

Feature	Railway Ballast	Highway Granular Base
Particle Size	Coarse, uniformly graded aggregate ranging from 20 mm to 65 mm	Well-graded aggregate ranging from fine particles (0.075 mm) to coarse particles (~50 mm)
Gradation Type	Single-sized gradation to maximize void ratio and promote drainage	Dense gradation (e.g., Fuller curve) to ensure compactness and internal friction
Particle Shape	Predominantly angular particles to ensure maximum mechanical interlocking	Mix of angular and rounded particles allowed to enhance compaction and constructability
Fines Content	Minimal fines (<1% passing 0.063 mm sieve) to prevent clogging and maintain high permeability	Controlled fines content (typically 4–8%) to provide binding and enhance load-spreading characteristics

Loading Characteristics

Feature	Railway Ballast	Highway Granular Base
Type of Load	Highly concentrated, cyclic loads applied through sleeper contact points	Distributed static and dynamic loads applied via vehicle wheels and dispersed through multiple pavement layers
Typical Load Range	Heavy axle loads of 25–30 tonnes per axle (equivalent to 125–150 kN per wheel)	Typical wheel loads between 40–80 kN, significantly lower and more spread out
Dynamic Loading	High dynamic amplification (impact factors up to 3.0), especially at rail joints and under high-speed trains	Lower dynamic factors (1.2–1.5), absorbed and spread through asphalt or concrete layers
Load Frequency	Subjected to millions of load cycles per year under train traffic	Lower frequency of loading with mixed traffic and longer intervals between peak loads
Load Contact Area	Point contact at sleeper-rail interface creates intense localized stress	Area loading via tire contact and pavement distribution minimizes stress concentrations

Performance Requirements

Feature	Railway Ballast	Highway Granular Base
Permeability	Requires very high permeability ($k > 10^{-3}$ m/s) for rapid drainage and avoidance of saturation	Moderate permeability acceptable; designed to maintain some moisture for frost resistance and cohesion
Drainage Performance	Must drain water quickly to avoid pumping, ballast fouling, and track instability	Drainage is important but supplemented by engineered systems like edge drains or subdrains
Lateral Restraint	Critical for maintaining track gauge and alignment; ballast resists side forces from train movement	Less critical due to lower lateral forces in highway loading
Particle Durability	Must resist crushing, breakage, and degradation under frequent high-impact loading	Must withstand weathering, compaction, and occasional dynamic forces from heavy vehicles

Dimensional Stability	Must maintain shape and orientation under millions of loading cycles	Stability ensured through interlocking gradation and compaction, but under lower cyclic demands
Frost Resistance	Not a primary requirement unless in severe climates	Essential in cold regions to prevent frost heave and preserve pavement integrity
Layer Compatibility	Compatible with sleepers and ties, works as a stand-alone structural layer	Designed to interface with bound layers (asphalt or concrete) and support pavement loads
Maintenance Needs	Requires frequent maintenance (tamping, cleaning, renewal) due to high cyclic stress	Designed for long-term use with minimal intervention if properly constructed

4d) Critical Factors for High-Speed Rail Track Ballast

High-speed rail applications impose exceptional demands on track ballast, requiring superior material properties and enhanced performance characteristics.

Enhanced Mechanical Properties

Superior Crushing Strength High-speed ballast must exhibit:

- Minimum crushing strength >180 kN (vs. 140 kN for conventional rail)
- Los Angeles Abrasion value <18% (vs. <25% for conventional)
- Micro-Deval coefficient <15% for wet attrition resistance
- Impact value <12% for dynamic resistance

Precise Geometric Characteristics

- Strict particle size control (25-50mm preferred range)
- Flakiness index <15% to prevent particle orientation
- Elongation index <15% for optimal packing
- Shape factor >0.6 for enhanced stability

Advanced Performance Criteria

Dynamic Stability Requirements High-speed ballast must maintain:

- Permanent deformation rate <0.1mm per million load cycles
- Resilient modulus >300 MPa under dynamic loading
- Lateral resistance coefficient >0.8
- Minimal particle migration under high-frequency loading

The critical importance of these factors stems from:

- Higher dynamic loads at speeds >200 km/h
- Reduced maintenance windows for high-frequency services
- Safety requirements for passenger operations
- Economic necessity for reliable high-speed operations

Quality Assurance Protocol

- Continuous gradation monitoring
- Regular geometric property testing
- Dynamic triaxial testing for performance validation
- Field monitoring of ballast condition using ground-penetrating radar

Environmental Considerations

Durability Under Extreme Conditions

- Resistance to freeze-thaw cycling
- Chemical stability in aggressive environments
- UV resistance for surface-exposed particles
- Minimal dust generation for air quality compliance

The selection and specification of high-speed rail ballast requires comprehensive testing protocols, stringent quality control measures, and ongoing performance monitoring to

ensure the safety and reliability of high-speed passenger services. These enhanced requirements justify the premium costs associated with high-specification ballast materials in high-speed rail applications.

Reference List

Agunwamba, J., Tiza, M.T. and Okafor, F., (2024). 'An appraisal of statistical and probabilistic models in highway pavements'. *Turkish Journal of Engineering*, 8(2), pp.300-329. doi: [10.31127/tuje.138994](https://doi.org/10.31127/tuje.138994)

Bentil, O.T. and Zhou, C. (2024). 'Pavement performance analysis considering the influence of suction and temperature on subgrade soil modulus'. *Transportation Geotechnics*, 49, pp.1-14. doi: [10.1016/j.trgeo.2024.101448](https://doi.org/10.1016/j.trgeo.2024.101448)

Chua, B.T., Abuel-Naga, H. and Nepal, K.P., (2023). 'Design charts for geogrid-reinforced granular working platform for heavy tracked plants over clay subgrade'. *Transportation Infrastructure Geotechnology*, 10(5), pp.795-815. doi: [10.1007/s40515-022-00243-5](https://doi.org/10.1007/s40515-022-00243-5)

Deshmukh, D.S. and Singh, K.L., (2024). 'Effects of Fine Particles on Shear Behaviour of Subbase Mix'. *International Journal of Geosynthetics and Ground Engineering*, 10(3), pp.1-34. doi: [10.1007/s40891-024-00565-z](https://doi.org/10.1007/s40891-024-00565-z)

Eisa, M.S., Basiouny, M.E., Mohamady, A. and Mira, M. (2022). 'Improving weak subgrade soil using different additives'. *Materials*, 15(13), pp.1-34. doi: [10.3390/ma15134462](https://doi.org/10.3390/ma15134462)

O'Connell, J., Maina, J. and Wynand, J. (2024). 'Short-term ageing of asphalt binder in thin asphalt layers'. *Construction and Building Materials*, 418, pp.1-22. doi: [10.1016/j.conbuildmat.2024.135386](https://doi.org/10.1016/j.conbuildmat.2024.135386)

Okonkwo, U.N. and Kennedy, C. (2023). 'The effectiveness of cement and lime as stabilisers for subgrade soils with high plasticity and swelling potential'. *Saudi Journal of Civil Engineering*, 7(3), pp.40-60. doi: [10.36348/sjce.2023.v07i03.001](https://doi.org/10.36348/sjce.2023.v07i03.001)

Shukla, B.K., Gupta, A., Gowda, S. and Srivastav, Y., (2023). 'Constructing a greener future: A comprehensive review on the sustainable use of fly ash in the construction industry and beyond'. *Materials Today: Proceedings*, 93, pp.257-264. doi: [10.1016/j.matpr.2023.07.179](https://doi.org/10.1016/j.matpr.2023.07.179)

Wang, Y., Zhao, Y., Zhang, M. and Fu, G., (2022). 'Influence of bedrock on the dynamic deflection response and dynamic back-calculation results of asphalt pavement: Insights from the numerical simulation of falling weight deflectometer tests'. *Construction and Building Materials*, 330, pp.1-17. doi: [10.1016/j.conbuildmat.2022.127252](https://doi.org/10.1016/j.conbuildmat.2022.127252)

