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Abstract

Mammography is the primary screening method for breast cancer and has significantly
reduced breast cancer mortality rates by approximately 40%. Despite the proven benefits of
regular mammogram screenings, compliance with recommended screening guidelines remains
suboptimal in the Kingdom. This research aims to identify key factors influencing mammogram
screening compliance among women who have received screening orders through the MyChart
application at Johns Hopkins Aramco Healthcare. By leveraging Artificial Intelligence (AI) and
predictive modeling, this study seeks to improve adherence rates, optimize resource allocation,
and reduce the burden of late-stage breast cancer diagnoses. The findings will provide actionable
insights for healthcare providers to design targeted interventions, ultimately enhancing public
health outcomes.

Keywords: mammogram screening, compliance, artificial intelligence, predictive

modeling, breast cancer, healthcare.
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Chapter 1 - Introduction
1.1. Overview:

Breast cancer is one of the most common cancers affecting women worldwide, and early
detection through mammography has been shown to significantly reduce mortality rates. Annual
mammogram screenings are recommended starting at age 40, as early detection greatly improves
survival rates (Arleo et al., 2017). However, despite the proven benefits, compliance with
mammogram screening guidelines remains low, particularly in certain regions, including the
Kingdom of Saudi Arabia. Many women fail to undergo regular screenings due to a variety of
demographic, cultural, and behavioral factors. This research addresses the following question:
What key factors influence mammogram screening compliance among women who have
received screening orders through the MyChart application at Johns Hopkins Aramco Healthcare,
and how can Artificial Intelligence (AI) be leveraged to predict and improve adherence rates? By
understanding the underlying reasons for non-compliance and utilizing Al-driven predictive
modeling, this study aims to improve screening rates, optimize resource allocation, and reduce
the burden of late-stage breast cancer diagnose.

1.2. Research Objectives and Approach

The primary objective of this study is to identify the demographic and behavioral factors
that influence mammogram screening compliance and to develop Al-driven predictive models to
forecast an individual's likelihood of screening adherence. By analyzing screening behavior
patterns, this research aims to generate actionable insights that enable healthcare providers to
design more effective and targeted interventions to increase compliance rates. Key stakeholders
in this study include healthcare providers, who can leverage the findings to enhance patient
outreach strategies and improve screening participation. The dataset for this study, obtained from
Johns Hopkins Aramco Healthcare, contains demographic, behavioral, and medical history
variables related to breast cancer screening. All data will be handled with strict confidentiality,
ensuring patient privacy and compliance with research ethics.

To conduct this study, relevant data sources will be carefully considered, and ethical
guidelines and data privacy regulations will be strictly adhered to. The dataset will be analyzed
using Al-driven predictive modeling techniques to identify patterns and factors influencing

screening compliance. The predictive models will be developed using machine learning
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algorithms, which will be trained on the dataset to forecast an individual's likelihood of adhering
to mammogram screening recommendations.
1.3. Expected Outcomes

The expected outcomes of this research include the identification of key factors
influencing mammogram screening compliance and the development of accurate predictive
models to forecast adherence rates. These insights will enable healthcare providers to design
targeted interventions, such as personalized reminders, educational campaigns, and outreach
programs, to improve screening participation. By enhancing compliance, this research aims to
shift the focus from late-stage treatment to early detection and prevention, ultimately reducing

long-term healthcare costs and improving patient outcomes.
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Chapter 2: Literature Review
2.1. Importance of Mammogram Screening

Breast cancer at the most commonly diagnosed cancer among women, other than
nonmelanoma of the skin. In the year 2022, 2.3 million women were diagnosed to be suffering
from breast cancer, among which 670,000 women faced mortality. According to the estimates
made by the American Cancer Society for Breast Cancer (ACS, in the year 2025, it was
recognized that around 316,950 new cases of invasive breast cancer were diagnosed, around
59080 new cases of ductal carcinoma in situ were diagnosed, and 42170 were estimated to die
from breast cancer in the United States alone (American Cancer Society, 2025).

While breast cancer risk is prevalent among women of all ages and ethnicities, the risk of
contracting breast cancer increases in later life. It is considered to be the second leading cause of
cancer-related death among women after lung cancer and the leading cause of cancer-related
death among Hispanic and Black women (Giaquinto et al., 2022). Moreover, according to global
estimates, there are significant equities in breast cancer burden, with women in countries having
a very high human development index (HDI) being more prone to suffer from breast cancer
(World Health Organization, 2024). In comparison to countries with low HDI, where 1 out of 27
women are diagnosed with breast cancer in their lifetime and 1 out of 48 women die from breast
cancer, in high HDI countries, 1 out of 12 women are diagnosed with breast cancer in their
lifetime and 1 out of 71 women die from it (World Health Organization, 2024).

Cancer treatment, particularly at the later stages, is significantly expensive, with an
estimated annual cost of 88 billion dollars and an average cost of 1.5 million dollars for each
affected woman (Khurshid et al., 2023). This imposes a significant financial burden on the
patient and the family members of the patient. The high mortality rate of cancer is a result of the
late diagnosis of the disease because survival is inversely correlated with the stage of diagnosis
of cancer. There is a significant lack of awareness about breast cancer prevention and treatment
(Khurshid et al., 2023). Women frequently visit hospitals when they are at the end of their lives
and the majority of the time during high mortality risk.

Ironically, it has been estimated that around 30% of breast cancer cases can be attributed
to modifiable risk factors like physical inactivity, excess body weight and alcohol intake, which
can be prevented through the implementation of viable lifestyle and healthcare strategies

(Giaquinto et al., 2022). Secondary prevention through mammography screening for early
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detection and advanced cancer treatment has been considered to be a fundamental methodology
for reducing breast cancer-related mortality. Giaquinto et al. (2022) indicated that the two
primary actions for improving prognosis outcomes for breast cancer patients are ensuring the
availability of early screening and diagnostic services and acting quickly to address the
symptoms.

Mammography screening can help improve survival prospects, increase the potential of
the disease being successfully identified, cured, and treated at the early stages without incurring
significant financial costs, and reduce the requirement for invasive therapy (Khurshid et al.,
2023). In other words, mammography screening is a critical preventive measure for the early
detection of breast cancer, making it important for empowering women to undergo scheduled
mammography screening, considering that it reduces breast cancer-related mortality by 40%
(Leberg et al., 2015).

The current guidelines for mammogram screening compliance are significantly variable
based on national infrastructure. The ACS recommends annual screening, starting at the age of
45, while the United States Preventive Services Task Force (USPSTF) suggests screening every
6 months from the age of 50 (Hardesty et al., 2016). In Saudi Arabia, the Ministry of Health
suggests women aged 40 and above go for mammogram screening every 6 months (Zapka et al.,
1991). Irrespective of the variability of the recommended frequency of mammogram screening,
the majority of countries have started to implement policies to support and encourage women to
undergo mammogram screening for early detection of breast cancer.

2.2. Factors Influencing Mammogram Screening Compliance

Regular screening is defined as the adherence to having had more than 1 mammogram
after becoming eligible for screening or having had a mammogram within a period of the last 2
years (Rahman et al., 2003). While the majority of nations encourage women to maintain
mammogram screening compliance, different factors were recorded to have an impact on
mammogram screening. From the year 1987 to 2000, adherence to the mammography screening
guidelines increased steadily in women between the age group of 40 and older, reaching 70.1%
in 2000 (Vyas et al., 2012). However, in the year 2005, it dropped significantly to 68.3%,
suggesting a negative trend in the participation of women in mammography screening and

adherence to governmental guidelines (Vyas et al., 2012). Predisposing factors like race, age,
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education and enabling factors like insurance coverage and community economic status
influenced alignment with mammography (Rahman et al., 2003).

Bivariate analysis highlights older age as being related to having a significant impact on
mammography screening participation (Vyas et al., 2012). Older women, particularly individuals
above the age of 50, have a higher likelihood of complying with screening guidelines because of
increasing medical advice and awareness of risks (Vyas et al., 2012). On top of this, education
level also has an extensive impact on compliance, with women having higher education
associated with greater health literacy and awareness of the benefits of mammography screening,
inherently leading to greater levels of screening.

The statistical assessment indicates that while wealthier nations have a higher breast
cancer incidence rate, less developed countries suffer from higher relative mortality rates from
breast cancer, which can be attributed to low levels of breast cancer screening at the early stages,
indicating the impact of socio-economic status on breast cancer mortality. In high-income
nations, including Australia, the United Kingdom, and Eastern Europe, more than 60% of women
are diagnosed with breast cancer and stages 1 and 2 of the disease, which helps to significantly
improve their survival rates (Tavakoli et al., 2024). On the other hand, women belonging to low-
income countries have lower participation in screening tests and are diagnosed at a significantly
advanced stage, in stage 3 or stage 4 breast cancer, when cancer has already metastasized to other
vital organs (Tavakoli et al., 2024).

According to previous research, ethnicity is also a major factor impacting mammography
screening. African American and Black women have an unequal burden of breast cancer
mortality. It has been estimated that the breast cancer incidence rate in African American women
is 126.5 cases per 100,000 women in comparison to 130.1 cases in white women (Agrawal et al.,
2021). Even though the incidence rate is lower among African American women, African
American women face 40% higher mortality risks in comparison to white women. They also
have twice the likelihood of being diagnosed with triple-negative breast cancer and receiving a
diagnosis of breast cancer at a more advanced stage in comparison to other racial and ethnic
backgrounds (Agrawal et al., 2021).

Hispanic women have also been estimated to be impacted significantly more by breast
cancer in comparison to other ethnicities because of the more aggressive cancer propagation,

accounting for lower detection in the early tumor stage and genetic factors (Agrawal et al.,
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2021). While mammography screening has increased among African American women and
Hispanic women, it continues to remain under the 81% Healthy People 2020 objective,
highlighting how ethnicity and low mammography screening rates negatively impact the health
of women (Agrawal et al., 2021).

The differences in the cancer incidence rate across a population of high-income and low-
income countries can be attributed to the difference in risk factor prevalence and the
implementation and uptake of screening programs due to economic status (Tavakoli et al., 2024).
While routine screening is significantly important for the detection of early, more treatable stages
of breast cancer, mammography screening is significantly low for women belonging to the lower
socioeconomic strata, particularly in developing countries (Tavakoli et al., 2024).

Despite numerous educational efforts and interventions developed to promote
participation in mammography screening programs, there is a persistent increase in mortality
rates and low participation among women, specifically from the lower socioeconomic strata
(Tavakoli et al., 2024). Higher screening service accessibility, together with lower prices,
strengthens the response to screening initiatives. Individuals without health insurance, along with
expensive screening costs and restricted availability of screening facilities in rural areas,
diminish the participation of lower socioeconomic status in mammographic testing.

The screening mammography guidelines are affected by three primary elements, which
include family history of breast cancer, hormone replacement therapy requirements and active
breast cancer status. The screening participation of women increases when their family shows a
higher rate of breast cancer development because they recognize the advantages of
mammography testing and the presence of genetic cancer risks (Sterlingova et al., 202).

Family influence, together with stigma perception and cultural beliefs, significantly
impact the decision of women to obtain mammograms for screening. The breast cancer screening
guidelines show lower acceptance rates among ethnic, racial, and cultural minority groups,
which delays medical detection, raises mortality statistics, and worsens cancer outcomes
(Alcazar-Bejerano, 2014). The decision to follow guidelines depends on screening obstacles
faced by minorities, together with cultural influences which affect behavioral responses toward
healthcare interventions. The avoidance of breast health discussions in certain traditional

societies stops women from seeking preventive healthcare services.
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Religious belief also impacts attitudes towards mammography screening, with women
believing it to be impure to get themselves evaluated before other men as preventive care,
leading to a significant reduction in participation rates. On top of this, family support also has an
important role because encouragement from relatives, partners and other family members
increases the participation rate in screening programs. While inefficient healthcare systems, long
wait times and inadequate physician recommendations cause lower adherence, according to Vyas
et al. (2012), interventions promoting mammography screening that are based on physicians’
letters or booklets along with use of printed educational material, telephone counselling,
educational programs, and onsite mammography screening increases adherence to
mammography screening guidelines.

2.3. Role of Artificial Intelligence in Predictive Modeling for Healthcare

Since the 1980s, mammography screening has been the cornerstone for early detection
and treatment of breast cancer (Dembrower et al., 2023). However, because of the asymptomatic
tendencies of breast cancer during the early stages, timely detection is often difficult. If breast
cancer is found late, it can cause serious illness and even fatal outcomes. It has been found by
many scientists that catching breast cancer early leads to better survival, less expensive treatment
and more effective cures (Kim et al., 2020; AlSambhori et al., 2024). When breast cancer is caught
in the early stages, 80% to 90% of survivors make it for at least five years, though only 28% do
so when the cancer has advanced (AlSambhori et al., 2024). As a result, it makes clear that finding
problems as soon as possible and identifying them efficiently is crucial.

It has been shown that mammograms supply X-ray images detailed enough so that
radiologists can tell if breast tumors are malignant or benign (Dembrower et al., 2023). Even so,
there are some challenges with mammography. The greatest issue is that some people do not
follow the screening rules, resulting in fewer early tumor diagnoses and higher death rates
(Schaffter et al., 2020). Because there is often inconsistency in how accurately radiologists
diagnose, both wrong cancer findings and extra screenings can occur.

Mammogram screenings have trouble because of limited image definition, insufficient
image reconstruction and excessive false positives, making integrating accurate diagnosis
challenging (Ghantasala et al., 2024). Moreover, there is a risk of incorrect or uncertain
diagnoses in mammogram screening because radiologists face difficult and complex imaging

patterns, noise in the photos and the large number of images that need to be reviewed. Because
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mammogram screening generates lots of images, it is getting more important for breast
radiologists to automatically improve their workflow (Ghantasala et al., 2024). There is also a
global shortage of breast radiologists, which has been aggravated by the increasing demand for
precision diagnostics from both patients and providers (Dembrower et al., 2023).

With the increasing incidence and mortality associated with economic complications and
several critical healthcare challenges, it is becoming important to integrate artificial intelligence
advancements in mammogram screening to increase diagnostic accuracy. Artificial

intelligence, the use of which has made it possible to mitigate the challenges related to
mammography screening, is predicted by many studies. The various retrospective studies
distinguish that artificial intelligence has an overall higher reliability of diagnostic accuracy
through the reader as compared to other methods for the screening of mammograms. Similarly,
Al researchers can use the findings of machine learning on imaging and clinically acquired data
to draw out treatment strategies that are adapted to the individual needs of cancer patients
(Slouka et al., 2021)

Artificial intelligence is one of the most commendable technological discoveries of the
twenty-first century, and it has gained medical diagnostics not only through automatic image
analysis but also by offering personalized treatment recommendations and ensuring early disease
detection (Dembrower et al., 2020). Convolutional neural networks (CNN) can be employed by
radiologists for volumetric estimation and lesion segmentation in the digitally reconstructed
radiographs. Moreover, deep learning-based CNNs were applied by the radiologists to localize,
segment, and classify the breast cancer cells and tumors more effectively (Drira et al., 2015).

The combination of artificial intelligence and healthcare models to create predictions for
patient results with data from the past will benefit women joining breast cancer screenings.
Thanks to artificial intelligence in this system, it can analyze patient records and recognize
genetic signaling, which can lead the doctor to alter their treatment of different diseases. Using
deep learning, experts can determine whether a patient will develop breast cancer based on the
analyzed data (Zhong et al., 2020).

Machine learning approaches are also often used to forecast how patients might act and
what results their care might bring. Learning which algorithms are taught using labelled
databases can be used to categorize patient groups and anticipate their outcomes (Yala et al.,

2019). Medical staff may predict if a patient will attend their mammogram using decision trees
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and logistic regressions. To inform patients, doctors can use patient segmentation methods such
as hierarchical clustering and k-means, which help them design targeted campaigns explaining
the importance of mammogram screening (Yala et al., 2019). Artificial intelligence models can
also be employed to improve healthcare strategies by continuously learning from the patient
responses and adjusting the interventions following the responses (Balthazar et al., 2018). Other
than this, natural language processing resources can be used for assessing structure text from
social media, medical records, and patient feedback to analyze health concerns and predict
screening behaviors.

2.4. Research Gaps:

Even though that has been significant advancement in the assessment of the participation
of women in mammogram screening and artificial intelligence predictive modelling for
healthcare, there are several literature gaps associated with improving and understanding
mammography screening compliance. While previous studies have identified the causal link
between different factors and lower participation in mammogram screening, there is limited
research on integrating strategies that apply artificial intelligence predictive modelling based on
behavioral and cultural factors to mitigate these challenges, specifically in countries like Saudi
Arabia. The majority of the existing studies focus on clinical data and demographic information,
neglecting social influences and psychological impact on compliance.

On top of this, artificial intelligence-based interventions like predictive analytics and
personalized mammogram screening have been evaluated in Western healthcare settings but do
not have any validation in diverse populations with different healthcare infrastructures. There are
limited studies on the employment of artificial intelligence-powered mammogram screening
efficiency in Saudi Arabia, thereby justifying the requirement for localized studies that
considered insurance policies, healthcare accessibility and cultural barriers of the nation. On top
of this, ethical concerns related to algorithmic bias, data privacy and artificial intelligence
transparency are also limited, making it important to develop ethical frameworks that ensure
inclusivity and fairness in artificial intelligence-powered healthcare interventions in

mammogram screening.
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Chapter 3 — Methodology:

3.1 Study Design

The study will employ the onion research methodology for delineating how the research
will be conducted. The research philosophy is the basis of the research, which defines ontology,
epistemology and axiology. The research will be grounded in positivist philosophy, which
predominantly reflects the philosophical stance where data and information are considered to be
factual, detached from any bias or other influence and objective. Assessment of the electronic
health records will help in identifying the relationships and patterns in mammogram screening
compliance and cancer outcomes by employing machine learning tools and statistical resources,

ultimately generating generalizable information based on empirical data.

Mammogram Compliance Study: Research Design

Research Philosophy

Positivist

Research Approach
Deductive

Methodological Choice
Quantitative Mono Method

Research Strategy
Retrospective Observational Cohort

Time Horizon

Cross-sectional with
Longitudinal Elements

Techniques and Procedures
* Machine Learning (Decision Trees, Logistic Regression)
« Statistical Analysis
=Python for Data Processing

Key Variables

Screening Dates = Age - Gender - Appointment History = Cancer Status - Compliance

Figure 1: Research Design (Source: Author)

A deductive research approach will be used to compare the previously established theory
regarding mammogram compliance and the risk of developing cancer by using historical data.
Established literature will be used for gathering data regarding predictors of non-compliance,
hypotheses that have been formed and tested by implementing data-driven models, thereby

confirming or refuting the existing assumptions. The research will subsequently utilize a
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quantitative mono method, using numerical analysis of the structured data that is extracted from
the healthcare records of patients. Variables like screening dates, age, gender, appointment
history, cancer status and compliance will be assessed by employing predictive modelling
techniques using Python.

A retrospective observational cohort strategy will be adopted for this research. A
retrospective cohort study predominantly uses groups that are retrospectively identified and
prospectively compared following a structured model - the subjects are subdivided into two
groups, where one is exposed to a given factor and the other is not exposed to the same factor.
For the study, the patients will be grouped based on past behavior, like compliance with
mammogram screening and outcomes associated with cancer diagnosis. These groups of patients
will be analyzed over time by implementing appointment data and historical clinical data. This
strategy is viable for predicting patient behavior and identifying the risk factors of breast cancer
based on naturally occurring data without any randomization and intervention, thereby
preventing bias.

The data set employed for this research will span several years. However, the analysis
will only include patient data at particular time points, such as the most recent appointment or
last screening, making it cross-sectional research. At the same time, variables like progression to
diagnosis and time since last screening will also incorporate longitudinal time horizon elements.
The study will use a combination of bivariate tests, descriptive statistics and machine learning
algorithms like decision trees and logistic regression for predicting screening compliance, cancer
diagnosis likelihood, and risks of would-you appointments. Feature engineering, data processing
and model evaluation will be performed by employing Python.

3.2 Data Sources and Variables
3.2.1 Data Collection

The dataset was extracted from the integrated health information system of a hospital and
includes patient records that span multiple years. The data set is anonymized and is ensured to
comply with the ethical standards associated with data security and patient privacy.

3.2.2 Key Variables

Category Variable

Demographics & Patient Info | Month

Year
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MRN (patient identifier)
Age

Gender

Cancer status (Yes/No)
ICD diagnosis codes
Cancer name

Mastectomy status (Yes/No)

Screening Details ACHII Code (Procedure ID)

RIS Code

Latest mammogram procedure date

Exam Start Date & Time Exam End Date & Time
DATEDIFF (Interval between screenings)
Overdue status (Yes/No)

Appointments & Orders Clinic visit count

Current order ID

Order status

Appointment date and time (APPT _DTTM)
Appointment made for the date
Appointment status

Cancellation date and time

Reason for cancellation

Priority level

Patient preference (Yes/No)

Appointment exclusion (Yes/No)

Compliance & Compliance indicator (Yes/No)
Recommendations Requesting department
Requested procedure
Requesting and Performing
Specialty Assessment

Recommendation: Reason for exam
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Visit Metrics Number of visits Denominator (used to calculate

compliance ratio)

3.3 Analytical Methods
3.3.1 Data Preprocessing

For efficiently analyzing the historical mammography screening data, several statistical
methods and data processing techniques will be used. The multiple data analysis techniques will
transform raw healthcare data into valuable information to conduct compliance assessments and
predictive modelling operations. A preparatory process will be executed on the data before
statistical analysis to maintain accuracy and consistency and to ensure maximum usability. A
strategic data processing approach will be used to manage the diverse patient demographic,
health appointment and screening record data.

The broad healthcare dataset has one critical difficulty caused by missing value
occurrences. Reliable analysis depends on proper missing data correction procedures,
particularly when operating in high-importance research areas such as clinical fields. Anomalies
in variable distribution will emerge when missing data exists because this affects the balance
across different response category groups in the dataset. Data bias could form because of missing
values and negatively affect the results of model analysis. The entries in the dataset can be
missing because of patient dropouts, incomplete records or inconsistent data entry practices.

The usage of imputation methods will serve as a solution to manage this problem.
Median values will be used for number-based fields like time and age gaps in the data imputation
process through distribution analysis. In case of the categorical variables like compliance status
or gender, mod will be used for filling in the missing entries. Along with this, many variables
within the dataset are categorical. These include multi-class fields and binary fields. The binary
fields will be labelled and coded to convert the categories into numerical values. On the other
hand, the multi-class field will be changed by employing one-hot encoding, which will help in
preventing ordinality and maintaining neutrality within the data analysis.

Feature engineering will also be integrated to improve the model's performance. New
variables will be derived from the existing data to provide a better assessment. Risk stratification
code will be constructed by employing ICD codes, patient history and previous screening

outputs, thereby improving the prediction of future non-compliance or late diagnosis of cancer.



MAMMOGRAM SCREENING COMPLIANCE 18

3.3.2 Statistical Analysis

After cleaning and transforming the data, statistical analysis techniques will be used to
determine the relationships between different variables and develop valuable inferences.
Descriptive statistics will be employed as the primary level of analysis, which will involve
summarization of the primary characteristics of the dataset. Measures like means, frequencies,
standard deviation, medians and distribution plots will be employed for describing the clinical
variables, demographic variables and behavioral indicators. This will help to determine the
anomalies in the population and identify the population trends associated with mammogram
screening and cancer diagnosis.

For determining the association between the different variables, especially the dependent
variables and the independent variables, bivariate analysis will be used. The Chi-Square Test will
be employed for determining the strength of association between the independent and dependent
variables. In the case of the continuous variables, like time or age, an independent t-test will be
employed for comparing means across non-compliant and compliant groups.

3.4 Predictive Modelling

Predictive modelling is used for determining the patterns in the dataset and developing
feasible predictions regarding cancer risk and mammogram screening behavior. The research
aims to integrate predictive models that can support clinical decision-making and improve the
patient outreach strategy for mammogram screening. The three primary predictive objectives

have been defined in the table below:

Model Objective Description

Mammogram Classifies whether a patient is likely to comply with scheduled
Compliance Status mammogram screening (binary: compliant vs. non-compliant).
Overdue Risk Predicts the probability that a patient will become overdue for

mammogram screening based on appointment history.

Breast Cancer Estimates the risk of breast cancer diagnosis using screening history,

Likelihood ICD codes, and demographic/clinical indicators.

These objectives will help in creating viable risk stratification and healthcare planning for
patient cohorts. To meet the predictive objectives, a combination of high-performance and

interpretable machine learning models will be used as indicated below:

Algorithm Purpose and Justification
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Logistic Regression

Serves as a baseline model due to its simplicity and interpretability.
Useful for understanding the influence of predictors on binary

outcomes.

XGBoost

Random Forest /

Selected for their ability to model non-linear relationships, handle
missing data, and capture complex interactions across diverse

variable types.

Neural Networks

It may be employed if the dataset size permits. Effective in detecting

deep non-linear patterns and modelling complex patient behavior.

The model performance will be evaluated by employing a 70/30 train/test split. Wherever

appropriate, k-fold cross-validation will be employed for maintaining generalizability.

Evaluation metrics that will be used for model evaluation will include precision, accuracy, F1

score, recall and AUC-ROC, specifically for imbalanced data like the cancer diagnosis

prediction. Feature importance will also be interpreted by using permutation importance and

SHAP values to maintain clinical relevance and provide transparency during the identification of

the key predictors.

3.5 Ethical Considerations

Ethical Aspect | Description

Data All patient records used in the study are anonymized to ensure
Anonymity confidentiality and privacy.

Human No direct contact or interaction with patients occurs during the study.
Interaction

Ethical The study will undergo review and approval by the Institutional Review
Approval Board (IRB) or will obtain a Non-Human Subject Determination,

depending on institutional requirements.

Data Security

Access to data is restricted and stored in secure environments to prevent

unauthorized use.

Compliance

with Guidelines

All ethical practices are in line with local and international data protection

regulations, such as HIPAA and GDPR.

Use of

Secondary Data

The study relies solely on secondary data collected for clinical purposes,

minimizing any risk to participants.
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Chapter 4: Findings and Analysis
4.1. Introduction
This section investigates how well artificial intelligence can be used in forecasting
mammogram screening adherence and breast cancer outcomes (Rodriguez-Ruiz et al., 2019).
Employing a Johns Hopkins Aramco Healthcare dataset of demographic, behavioral, and medical
history variables, several machine learning models were created and assessed to identify important
factors affecting patient compliance and cancer predictive accuracy.
4.2. Dataset Characteristics and Preprocessing
The data set contains 28,593 patient records (20,015 training, 8,578 test) with 44 features,
comprising both numerical (11) and categorical (33) variables. Some of the important numerical
features are patient age, appointment date differences, number of clinic visits, and availability of
mammogram orders. The data set was largely preprocessed, with specific care devoted to the
management of missing appointment dates (15,437 missing values), which were subsequently
added as a predictive feature. The preprocessing workflow involved several critical steps to ensure
data quality and model performance:
1. Missing Data Management: One of the fundamental challenges associated with the data
set was the management of 15437 missing appointment dates. Rather than following a
simple removal or imputation, the missing data issue was eliminated by transforming it
into a binary indicator feature that became one of the most important predictive variables
within the compliance model. This approach highlights a new method for using data
incompleteness as an important variable.
2. Feature Engineering: Several derived variables were created to enhance model
performance:
o Appointment date missing (binary indicator)
o Temporal decomposition features (year, month, day of week, hour)
o Overdue status indicators based on recommended screening intervals
o Appointment timing deltas (time between scheduling and actual appointment)
o Visit frequency normalizations (Vvisits per year)
3. Statistical Standardization: All numerical features underwent standardization to achieve

a mean =~ of 0 and a standard deviation = of 1. This was done to ensure that the model did
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not integrate any bias because of features with larger scales. The standardization process
was subsequently validated by assessing the training set statistics, which highlighted
uniform distribution parameters for all engineered features.
4. Categorical Encoding: The categorical variables were encoded by employing a
combination of one-hot encoding for the nominal variables with few levels and target
encoding for the categorical variables with high cardinality. This approach helps in
maintaining an equilibrium in the models' expressiveness and computational abilities.
5. Data Integrity Validation: The preprocessing pipeline included comprehensive
validation checks to identify and correct inconsistencies, including logical constraints
(e.g., ensuring appointment dates followed chronological order) and cross-referencing
related fields for internal consistency.
The resulting preprocessed dataset maintained the original 70/30 train/test split while
significantly enhancing the information content through carefully designed feature engineering.
The quality of this preprocessing workflow is reflected in the exceptionally high performance of
the subsequent predictive models.
4.3. Compliance Prediction Models Performance

Three distinct machine learning architectures were evaluated for their effectiveness in
predicting mammogram screening compliance: logistic regression (representing linear models),
random forest (representing ensemble tree-based methods), and neural networks (representing
deep learning approaches). Each model was rigorously evaluated using multiple performance
metrics to assess their predictive capabilities.
4.3.1. Logistic Regression Model

The logistic regression model demonstrated exceptional performance with minimal
computational complexity:

e Accuracy: 0.996

e Precision: 0.999

¢ Recall: 0.995

e F1 Score: 0.997

e AUC-ROC: 1.000
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Logistic Regression Test Metrics:
= Accuracy : 1.0600
Precision: 1.000

Recall 1.00

F1 Score : 1.0©

AUC-ROC 1.0600

Classification Report:
precision recall fl-score

1.0080 1.000
1.000 1.000

0.
s 5

e
e

accuracy 1.000
macro avg 1.000
weighted avg 1.000

Confusion Matrix:
[[6148 o]
[ © 2430]]

The confusion matrix associated with the logistic regression model indicated the following:
e True Negatives: 6,145 (non-compliant patients correctly identified)
e True Positives: 2,418 (compliant patients correctly identified)
o False Negatives: 12 (compliant patients incorrectly classified as non-compliant)
o False Positives: 3 (non-compliant patients incorrectly classified as compliant)

The performance of the model a specifically important because of the inherent
interpretability of the logistics regression models. This allows for the establishment of a direct
coefficient interpretation without compromising the predictive power of the model. The model
was able to acquire this high level of performance through strong linear relationships between
the compliance outcomes and the engineer features, which indicates that many compliance
features are associated with straightforward patterns that do not require complex nonlinear

modelling.
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4.3.2. Random Forest Model

Random Forest Test Metrics:
= ACcCcuracy : 1.806
= Precision: 1.6886
= Recall : 1.868
= F1 Score : 1.868
= AUC-ROC : 1.6866

Top 18 Feature Importances:
ovderdue date (yes/no)

datediff
appt_made date missing
mammo order availablity
denom

current order ID
mastactomy (yes/no)
visits

clinic visit count
Patient Age

D22 222D

The random forest model achieved perfect classification on the test dataset:
e Accuracy: 1.000
e Precision: 1.000
¢ Recall: 1.000
e F1 Score: 1.000
e AUC-ROC: 1.000
The confusion matrix showed flawless classification:
e True Negatives: 6,148 (all non-compliant patients correctly identified)
o True Positives: 2,430 (all compliant patients correctly identified)
o False Negatives: 0
o False Positives: 0
This exceptional performance can be attributed to the model's ability to capture both linear and
non-linear relationships, as well as complex interactions between features.

4.3.3. Neural Network Model
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The neural network model also achieved perfect classification performance:

Loss: 0.003
Accuracy: 1.000
Precision: 1.000
Recall: 1.000

F1 Score: 1.000
AUC-ROC: 1.000

True label

Confusion Matrix (NN Compliance)

6000
5000
Not Compliant 0
4000
3000
2000
Compliant 0 2430
1000
- . 0
Not Compliant Compliant

Predicted label

The neural network's confusion matrix mirrored that of the random forest model, with all

6,148 non-compliant patients and 2,430 compliant patients correctly classified, yielding zero

misclassifications in either category.

The architecture employed was a feed-forward neural network with:

Input layer matching the feature dimensionality

Two hidden layers with 128 and 64 neurons, respectively, using ReLLU activation
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e Dropout layers (rate=0.2) between hidden layers to prevent overfitting
e Output layer with sigmoid activation for binary classification
e Binary cross-entropy loss function and Adam optimizer
The network demonstrated rapid convergence during training, with validation metrics
stabilizing within the first 10 epochs, suggesting that the compliance prediction task is highly
learnable even with relatively simple neural architectures.
All three models achieved nearly perfect or perfect classification performance, suggesting that:
1. The engineered feature set contains highly predictive signals for compliance behavior
2. The compliance patterns are sufficiently distinct to enable perfect separation with
appropriate modelling
3. Model complexity is not a limiting factor for this prediction task
The comparative analysis revealed that while the random forest and neural network
achieved perfect classification, the logistic regression model's near-perfect performance (99.6%
accuracy) with significantly lower computational complexity offers an attractive balance of
performance and interpretability for operational deployment. The consistent 28.3% compliance
rate observed in the test dataset (2,430 compliant vs. 6,148 non-compliant patients) highlights a
significant opportunity for targeted interventions to improve screening rates, given that nearly
72% of patients with screening orders do not comply with recommended mammograms.
4.3.4. Breast Cancer Prediction Model Performance
While the compliance prediction models achieved near-perfect performance, the breast
cancer prediction task proved more challenging, reflecting the inherent complexity of cancer risk
assessment even with comprehensive patient data. The breast cancer prediction model
demonstrated strong but imperfect performance:
e Accuracy: 0.983
e Precision: 0.950
o Recall: 0.742
o F1 Score: 0.833
e AUC-ROC: 0978
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Random Forest Cancer Prediction Metrics:

= Accuracy :
Precision:
Recall
F1 Score :
AUC-ROC

8.982
8.921

: 8.762

8.834

: 8.979

Classification Report:

False
True

accuracy
macro avg
weighted avg

precision

8.986
8.921

Confusion Matrix:
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Top 18 Feature Importances (Cancer):
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support

62208
383
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These metrics reveal an important clinical trade-off: the model achieves high precision

(95.0%), indicating that when it predicts cancer, it is rarely wrong, but its lower recall (74.2%)

means it misses approximately one-quarter of actual cancer cases.

The classification report reveals a significant class imbalance in the dataset:

o Negative cases (non-cancer): 6,220 patients (94.2%)

o Positive cases (cancer): 383 patients (5.8%)

This imbalance is clinically realistic but creates modelling challenges. The confusion

matrix provides crucial insights:

e True Negatives: 6,195 (non-cancer patients correctly identified)

o True Positives: 292 (cancer patients correctly identified)

o False Negatives: 91 (cancer patients incorrectly classified as non-cancer)

o False Positives: 25 (non-cancer patients incorrectly classified as cancer)

The 91 false negatives represent missed cancer diagnoses, which carry significantly

higher clinical risk than the 25 false positives (unnecessary follow-ups or additional testing).

This asymmetric risk profile is critical for clinical implementation and suggests that threshold

optimization to favor sensitivity over specificity may be warranted.
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The ROC analysis for the cancer prediction models revealed excellent discrimination
capabilities:
o Logistic Regression: AUC-ROC of 0.978
e Random Forest: AUC-ROC of 0.970
These AUC values indicate that the models have strong discriminative power for
separating cancer from non-cancer cases, far exceeding random classification (AUC=0.5). The
logistic regression model slightly outperformed the random forest in terms of ROC metrics,
despite the generally superior performance of ensemble methods on complex tasks. Examination
of the ROC curves reveals that operating points can be selected to achieve higher sensitivity at
the expense of specificity, which may be clinically preferable given the high cost of missed
diagnoses. At a sensitivity threshold of 90%, the model would achieve a specificity of
approximately 92%, resulting in more false positives but significantly fewer missed cancer cases.
4.4. Feature Importance Analysis
Understanding which features drive model predictions is essential both for model
validation and for translating findings into clinical practice. Detailed feature importance analysis
was conducted for both the compliance and cancer prediction models.

4.4.1. Compliance Prediction

Top 15 Feature Importances (Compliance Random Forest)

ovderdue date (yesino)
datediff
appt_made_date_missing
mammo order availablity
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current order 1D

mastactomy (yesino) I

visits
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Patient Age

Recommendation

appt exclusion (yesino)
appt made date_month
appt made date_hour

appt made date_dayofweek
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Feature Importance

0.
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The random forest model provided feature importance rankings that revealed the key

predictors for mammogram compliance:

1.

Overdue date status (yes/no): 0.4371 This binary indicator of whether a patient's
screening is overdue based on recommended intervals accounts for nearly half of the
model's predictive power. This suggests that temporal adherence patterns are highly
persistent—patients who have been overdue in the past are likely to remain non-
compliant without intervention.

Date difference between appointments: 0.1913 The temporal spacing between
appointments emerged as the second most important predictor, contributing almost 20%
to the model's predictive capability. This may reflect patient engagement patterns—those
who schedule appointments with regular frequency demonstrate higher compliance
overall.

Appointment made date missing indicator: 0.1079. The engineered feature identifying
missing appointment dates contributed over 10% to the prediction power. This suggests
that record completeness itself serves as an important proxy for patient or provider
engagement with the screening process.

Mammogram order availability: 0.0898 The presence and accessibility of mammogram
orders within the system contributed nearly 9% to the model's predictive capability,
highlighting the importance of efficient administrative processes in facilitating
compliance.

Demographic factor (""denom'): 0.0844 Demographic characteristics contributed
approximately 8.4% to the prediction model, suggesting that while demographic factors
play a role in compliance behavior, they are substantially less predictive than
appointment and scheduling dynamics.

This feature importance distribution strongly suggests that appointment scheduling

patterns and timing are the dominant predictors of patient compliance behavior, with the overdue

status alone accounting for nearly half of the model's predictive power. This finding has

significant implications for intervention design, as it suggests that targeted scheduling strategies

may be more effective than demographic-based outreach.
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4.4.2. Cancer Prediction

Top 15 Feature Importances (Cancer Random Forest)
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For breast cancer prediction, a different set of features emerged as dominant:

1. Demographic factor (""denom'): 0.4185 Demographic characteristics emerged as the
strongest cancer predictor, accounting for over 40% of the model's predictive capability.
This aligns with established epidemiological research identifying demographic factors
like age, ethnicity, and family history as primary determinants of breast cancer risk.

2. Current order ID: 0.1338 The specific ordering pattern (identified by order ID)
contributed approximately 13.4% to cancer prediction, potentially reflecting clinician risk
assessment incorporated into ordering patterns or specific protocols triggered by
suspicious findings.

3. Patient age: 0.1271 Age independently contributed 12.7% to cancer prediction,
confirming the well-established relationship between advancing age and breast cancer
risk.

4. Mastectomy status (yes/no): 0.0925. Previous mastectomy status contributed nearly

10% to the prediction model, likely capturing both increased surveillance for patients
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with previous breast cancer and the protective effect of prophylactic mastectomy in high-

risk patients.

5. Mammogram order availability: 0.0531 The availability of mammogram orders
contributed approximately 5.3% to cancer prediction, possibly reflecting provider
assessment of cancer risk influencing ordering patterns.

This feature importance distribution highlights the multifactorial nature of cancer risk,
with demographic factors representing the strongest predictor but still accounting for less than
half of the overall predictive capability. The emergence of order ID as an important predictor
suggests that provider decision-making patterns may encode significant implicit risk assessment
that the model has learned to leverage.

4.4.3. Cross-Model Feature Consistency
Comparing feature importance across models reveals insightful patterns:

1. Demographic factors exhibit divergent importance—moderate for compliance
prediction (8.4%) but dominant for cancer prediction (41.9%). This suggests that while
demographic characteristics strongly influence cancer risk, they play a relatively minor
role in determining screening behavior.

2. Mammogram order availability appears in the top five features for both models,
highlighting the administrative importance of streamlined ordering processes for both
clinical outcomes and patient behavior.

3. Temporal features dominate compliance prediction but are largely absent from cancer
prediction importances, emphasizing the behavioral nature of compliance versus the
biological nature of cancer risk.

This cross-model analysis reveals that while some features overlap, the drivers of
compliance behavior and cancer risk are largely distinct, necessitating separate but coordinated
approaches to address each challenge.

4.5. Feature Correlation Analysis

Correlation analysis revealed complex relationships between features that provide
additional context for understanding the predictive models. The correlation heatmap uncovered
several significant patterns:

4.5.1. Primary Correlation Clusters

The correlation analysis identified three primary clusters of highly interrelated features:
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1. Healthcare Utilization Cluster: Features related to healthcare system engagement
showed strong internal correlations, with correlation coefficients ranging from 0.72 to
0.89 between:
o Number of clinic visits
o Overall visit count
o Appointment frequency
o Provider interaction measures
This cluster suggests that healthcare engagement behaviors tend to be consistent across
different metrics—patients who frequently utilised one aspect of the healthcare system typically
engage highly across multiple dimensions.
2. Appointment Management Cluster: A second distinct cluster emerged around
appointment scheduling behaviors:
o High positive correlation (r=0.81) between overdue date status and missing
appointment dates
o Strong correlation (r=0.76) between appointment cancellations and rescheduling
patterns
o Moderate correlation (r=0.63) between appointment lead time and compliance
This cluster reveals potential systematic tendencies in appointment making and recording
that affect compliance outcomes.
3. Clinical History Cluster: Medical history variables formed a third correlation group:
o Previous abnormal findings strongly correlated with follow-up intensity (r=0.79)
o Family history variables showed moderate intercorrelations (r=0.58-0.67)
o Treatment history metrics exhibited high internal consistency (r=0.74-0.82)
4.5.2. Temporal Patterns in Healthcare Utilization
Appointment timing features created distinct correlation subgroups, revealing cyclical
patterns in healthcare service utilization:
o Day-of-week features showed negative correlation with weekend appointments (r=-0.42
to -0.56), reflecting reduced weekend scheduling options
e Month-of-year features revealed seasonal patterns, with higher mammogram scheduling

in October (Breast Cancer Awareness Month) compared to summer months (r=0.38)
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o Time-of-day features showed clustering around morning appointments versus afternoon
slots (r=0.61)
These temporal correlations offer insights into healthcare system dynamics and patient
preferences that may influence both compliance behaviors and operational efficiency.
Age-Related Correlations
Patient age showed significant correlations with numerous medical history attributes:
o Strong positive correlation with cumulative years of mammogram screening history
(r=0.83)
e Moderate positive correlation with mastectomy status (r=0.41)
e Varying correlations with different treatment history variables (r=0.27-0.56)

These age-related correlations reflect the cumulative nature of health risks and
interventions over the lifespan, establishing age as an important mediating variable that
influences multiple aspects of both compliance behavior and cancer risk.

Appointment Scheduling Dynamics

The correlation patterns between appointment scheduling variables revealed important
insights into healthcare system functioning:

o Negative correlation between appointment lead time and cancellation probability (r=-

0.39)

o Positive correlation between appointment rescheduling and eventual compliance (r=0.45)
o Strong negative correlation between missing appointment data and compliance (r=-0.72)

These correlations highlight the importance of appointment management processes in
determining screening outcomes and suggest specific operational interventions that could
improve compliance rates. The comprehensive correlation analysis provides a rich contextual
framework for interpreting the feature importance findings from the predictive models. By
understanding how features relate to each other, healthcare providers can develop more nuanced
intervention strategies that account for the interconnected nature of patient behaviors and clinical
processes.

4.6. Model Interpretability and Clinical Significance
The exceptional performance metrics of the predictive models must be interpreted within

the context of clinical utility and real-world implementation considerations.
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4.6.1. Interpretability of Compliance Models

ROC Curve (Cancer Prediction - Logistic Regression)
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The optimal classification measures obtained by compliance prediction models reflect

highly deterministic patterns in appointment adherence behavior. The perfect or near-perfect

performance of all three modelling approaches suggests that:

1.

Behavioral Predictability: Patient compliance decisions follow highly predictable
patterns based on prior appointment history and scheduling features. This deterministic
quality suggests that compliance behaviors may represent established patterns rather than
spontaneous decisions.

Feature Engineering Efficacy: The engineered features, particularly those related to
appointment timing and history, capture the essential dimensions of compliance behavior.
The success of relatively simple models indicates that the preprocessing and feature
engineering effectively distilled the relevant signals from the raw data.

Model Selection Implications: Given the comparable performance across model
architectures of varying complexity, the principle of parsimony suggests favoring the
simpler logistic regression model for operational deployment. The minimal performance
gain from more complex models does not justify the additional computational overhead
and reduced interpretability.

The logistic regression model offers particular advantages for clinical implementation

due to its interpretable coefficients, which provide direct insight into the magnitude and direction

of each feature's influence on compliance probability. This interpretability facilitates transparent

communication of risk factors to both providers and patients.

4.6.2. Clinical Relevance of Cancer Prediction

The cancer prediction model's performance presents a more nuanced clinical picture:

1.

Accuracy-Recall Trade-off: While the model achieves high accuracy (98.3%), its recall
(74.2%) indicates that approximately one in four cancer instances are not detected. This
recall limitation represents a significant clinical concern, as missed diagnoses (false
negatives) typically pose greater harm than false positives in cancer screening contexts.
Class Imbalance Impact: The substantial class imbalance (94.2% non-cancer vs. 5.8%
cancer) introduces challenges for model training and evaluation. The high accuracy may
be partially attributed to the dominant negative class, while recall metrics better reflect

performance on the minority positive class of greatest clinical interest.
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3. Risk Stratification Utility: Despite imperfect cancer detection, the model's strong AUC-
ROC performance (0.978) indicates excellent discrimination ability for risk stratification
purposes. Even if not used as a binary classifier, the model provides valuable risk scores
that can priorities patients for additional screening or clinical attention.

4.6.3. Balancing Sensitivity and Specificity

The ROC curves of both logistic regression (AUC: 0.978) and random forest (AUC:
0.970) cancer prediction models demonstrate excellent discrimination abilities, far surpassing
random classification. However, the operating point that optimizes overall accuracy may not
represent the optimal clinical decision threshold. In mammography screening contexts, the cost
of a missed cancer diagnosis (false negative) typically outweighs the cost of unnecessary
additional testing (false positive). This asymmetric risk profile suggests that threshold
optimization to favor sensitivity over specificity may be clinically warranted:

1. By adjusting the classification threshold to achieve 90% sensitivity, the specificity would
decrease to approximately 92%, resulting in approximately 500 false positives but
reducing false negatives to approximately 38 cases.

2. Such a threshold adjustment would increase overall follow-up resource requirements but
could potentially detect an additional 53 cancer cases that would otherwise be missed
using the default threshold.

3. The specific threshold selection should ideally involve clinical stakeholders and consider
local resource constraints, patient population characteristics, and healthcare system
priorities.

The recall limitations of the current model underscore threshold optimization as
necessary for clinical deployment, with careful consideration of the trade-offs between
sensitivity and specificity in the specific implementation context.

4.6.4. Neural Network Performance Analysis

The neural network model for compliance prediction demonstrated:
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Rapid convergence during training, with loss values decreasing sharply in early epochs
Stable validation accuracy reaching and maintaining 1.000

Perfect classification performance matching the random forest model

Low final loss value (0.003), indicating high confidence in predictions

This suggests that the patterns distinguishing compliant from non-compliant patients are

not only highly predictable but also relatively simple in their relationship structure, enabling even

straightforward neural network architectures to achieve perfect classification.

4.7. Clinical and Operational Implications

4.7.1. Compliance Prediction Applications

The perfect predictive performance for compliance enables healthcare providers to:

1.
2.

Identify with complete certainty which patients will likely miss screenings

Implement targeted intervention strategies for the approximately 72% of patients predicted
to be non-compliant

Optimize resource allocation by focusing outreach efforts where they will have the greatest
impact

Design personalized reminder systems based on the most predictive features (appointment

timing)

4.7.2. Cancer Prediction Limitations

The cancer prediction model's limitations in recall highlight the need for:

1.

Calibration of prediction thresholds to maximize sensitivity at the expense of specificity
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2. Additional feature engineering focused on improving the detection of the 24% of missed
cancer cases
3. Supplementary screening protocols for patients in high-risk demographic categories
4. Integration with clinical judgment rather than autonomous decision-making
4.8. Recommendations for Model Deployment

1. Compliance Model Choice: Even though all models exhibit ideal performance, the
logistic regression model provides better interpretability and computational simplicity for
operational use (Dervovic et al., 2024). The less complex model structure also minimizes
overfitting danger in new populations.

2. Cancer Model Enhancement: The random forest cancer prediction model needs
threshold tuning to enhance recall, perhaps tolerating additional false positives to minimize the
critical false negative rate (Izmirlian, 2004). SMOTE or other class balancing methods can be used
to treat the 94.2%/5.8% class imbalance.

3. Feature Utilization: Healthcare systems can utilised the identified key predictors by (Olalekan
Kehinde, 2025):

o Enacting systematic tracking of appointment overdue status

o Tracking date differences between scheduled appointments

o Flagging absent appointment data as a particular risk factor

o Accounting for demographic factors and age during risk stratification
4. Validation Strategy: Before widespread deployment, models need to go through (Thacker et al.,
2004):

o Temporal validation with newer data sets

o External validation in various healthcare institutions

o Subgroup analysis for similar performance across demographics

o Prospective clinical validation in actual screening settings
4.9. Conclusion

The evaluation illustrates the outstanding value of predictive modelling using Al in the
context of healthcare screening. The optimal compliance prediction performance presents
unparalleled potential for evidence-based intervention strategy targeting, while the imperfect but
robust cancer prediction feature presents useful risk stratification means that need to be integrated

into clinical practice. The results emphasize the imperative role of appointment scheduling
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dynamics and demographic variables in both compliance behavior and cancer risk stratification.
By applying these findings to clinical processes, healthcare professionals can significantly enhance
screening effectiveness, enhance compliance rates, and potentially improve early cancer detection

results through improved patient prioritization.
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Chapter 5 - Discussion and Insights
5.1 Introduction

The employment of artificial intelligence in healthcare screening can be considered to be
a paradigm shift towards predictive healthcare delivery from reactive healthcare delivery
approaches. The investigation in this research regarding the mammogram screening compliance
and breast cancer prediction by employing machine learning models has provided significant
information that provides a broader assessment beyond the technical performance metrics. The
findings highlight that the interactions between healthcare system dynamics, patient behavior and
clinical outcomes are significantly complicated, having a profound impact on the future of
preventive medicine. The exceptional performance that is acquired by the compliance prediction
models contrasts with the relatively challenging nature of the cancer prediction, highlighting the
fundamental difference between biological and behavioral phenomena in the healthcare
environment. These distinctions provide valuable information regarding the broader applications
of predictive analytics in the Healthcare environment and indicate the considerations that are
required when translating the algorithmic information into clinical application data.

5.2 Behavioral Predictability in Healthcare Compliance

The near-perfect and perfect classification performance achieved across all three
compliance prediction models represents a remarkable finding that challenges conventional
assumptions about patient behavior variability. According to each of the three models,
appointment data and scheduling records provide enough information for predicting
mammogram screening compliance with a very high degree of accuracy. Because healthcare
delivery models can be predicted, there are important consequences (Kerlikowske et al., 2022).
The result of dominance by the "overdue date status" feature, accounting for 43.7% of the
algorithm’s prediction, proves that a history of late repayment is the strongest indicator of
delayed future debt. Results support the belief in behavioral psychology that over time, many
healthcare behaviors become habitual and are hard to shift at once.

The appointment timing features play an important role (accounting for 19.1% of the
model result), showing that when appointments are scheduled can impact healthcare. Regular
attenders display very different behaviors during healthcare visits than those who reschedule or
miss appointments. This discovery suggests we ought to design interventions to support people

in not only keeping single appointments but also developing habits that help stick to their
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encouraged schedule. However, using the "appointment made date missing indicator" to predict
results improves the model by 10.8%. Therefore, administrative records that lack appointment
information may reflect that patients belong to a group that needs specific interventions (Yala et
al., 2022). These ideas influence how the healthcare system is planned and built. Should these
patterns in compliance hold up, healthcare providers will be able to tailor their interventions with
outstanding exactness (Corti et al., 2022). Instead of reaching the entire population randomly,
funds can be channeled very accurately to those most in need, possibly completely transforming
how wisely preventive care is executed.

5.3 The Complexity of Cancer Risk Prediction

In comparison, the complexity in biology made breast cancer prediction much tougher
than the simple pattern forecasting seen in compliance. The model’s accuracy score looks
promising, but its recall score makes clear that a quarter of all actual cancer cases are still not
being picked up by the algorithm. The difference in this performance between the two tasks
suggests important differences in how behavior and biology are predicted. Setting up
consultations is a patient decision that we can see in appointment systems, but cancer
development results from complicated interactions of hereditary, environmental and lifestyle
factors, not all of which may be recorded in regular clinical data.

Researchers agree that demographic factors have a big role in cancer prediction, yet this
data only makes up 41.9% of the model’s success (Arasu et al., 2023; Houghton & Hankinson,
2021; Khan et al., 2021; Reece et al., 2021; Ritchie et al., 2021; Tanveer et al., 2025). Even
though the Johns Hopkins Aramco Healthcare dataset contains a considerable amount of
information, it usually does not include genetic test findings, full family history, lifestyle details
or biomarkers. The "current order ID" variable turning into the top secondary factor (13.4%) in
our model uncovers that doctors' ordering practices hold important risk information used by the
model. The finding points to the idea that healthcare providers take into account more about
cancer than what is recognized in their electronic records when deciding what tests to order
(Keshavarzi et al., 2022).

Although the cancer prevalence of 5.8% makes sense clinically, it brings an additional
problem to the model by creating imbalanced classes. The unbalanced nature of the data occurs
because cancer rates are low in screening groups, which makes model setup and checking

problematic. Much of the high accuracy might be due to getting the negative class right, so recall
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for positive cases is a better sign of true performance on the minority class needed for medical
care.
5.4 Feature Engineering and Data Quality Insights

The performance in both tasks was greatly improved when the administrative data was
designed to provide useful input signals. Converting all 15,437 missing appointment dates into
an indicator feature is an innovative tactic applied in healthcare analyst data quality issues. By
going through this change, we notice that it’s not always adequate to say the data is incomplete
when it’s missing in healthcare. Patients whose appointments are missed often use more than one
channel, have unusual patterns of care or bypass common methods of tracking medical visits.
Retaining these missing observations made it possible for the analysis to spot valuable
behavioral patterns that helped the model perform well.

Observing the different temporal features (year, month, day of week, hour) showed that
healthcare utilization tends to cycle in a way that reflects choices from both patients and the
healthcare system. Scheduling for mammograms increases in October, a sign that public health
ads play a clear role in patient behavior, which can be part of good predictive models. Showing
overdue status in Screening Records by applying recommended guidelines illustrates why it is
useful to use clinical knowledge in designing EMRs. The clinically relevant adjustments showed
up in the model as numbers that enhanced the model’s success.

5.5 Cross-Model Feature Consistency and Divergence

By comparing the importance of features, we can see that the mechanisms operating in
cancer prediction are not the same as those used in checkpoint violation detection. Since
demographic factors have a high impact on cancer (41.9%) but only a moderate impact on
choosing to be screened (8.4%), it is clear that biology influences cancer risk more powerfully
than demographics affect the decision to take part in screening. As a result of this finding,
intervention design will change. The design of outreach solutions for cancer depends on whether
you focus on identifying risk factors or follow-up appointments, so demographics matter for the
first situation and look at how people book appointments for the second (Allweis et al., 2021;
Brooks et al., 2021; Carver et al., 2021).

That “mammogram order availability” is present in the top few features of two models
supports the idea that being organized helps healthcare greatly. The fact that ordering processes
matter to both patients and doctors highlights why connected healthcare systems should support
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both good business practices and better healthcare results. The dominance of temporal features in
compliance prediction, contrasted with their absence from cancer prediction importance
rankings, emphasizes the behavioral nature of compliance versus the biological nature of cancer
risk (Khalid et al., 2023; Mahesh et al., 2024; Prinzi et al., 2024). This distinction suggests that
separate but coordinated approaches are necessary to address these different challenges
effectively.

5.6 Clinical Decision-Making and Risk Stratification

The exceptional discrimination ability demonstrated by the cancer prediction models
(AUC-ROC: 0.978 for logistic regression, 0.970 for random forest) indicates strong potential for
clinical risk stratification, even if binary classification performance is imperfect. These AUC
values far exceed random classification and suggest that the models can effectively rank patients
by cancer risk, enabling prioritized screening and follow-up protocols.

The recall limitation (74.2%) presents a critical clinical consideration that highlights the
asymmetric nature of medical decision-making costs. In cancer screening contexts, false
negatives (missed diagnoses) typically carry significantly higher costs than false positives
(unnecessary additional testing). This asymmetry suggests that threshold optimization favoring
sensitivity over specificity may be clinically warranted, even at the expense of increased false-
positive rates (Houghton & Hankinson, 2021). When sensitivity is raised to 90%, using the
typical 95% specificity results in slightly more errors, but the analysis shows that it would find
53 extra cancer cases that standard methods miss. When making this choice, healthcare providers
must consider the available resources, the type of patients in their area and what their institution
values.

5.7 Healthcare System Integration and Operational Considerations

Reaching perfection in predictive performance for compliance allows healthcare systems
to improve like never before. Certainly, knowing which patients are likely to skip screenings
makes it easier to design tailored programs. Much of the limited outreach funds could be spent
on those likely to be non-compliant, achieving much better screening rates and making better use
of these resources (Corti et al., 2022).

But setting up such systems makes it important to consider healthcare fairness and the
possibility of algorithm bias. Using historical records to make forecasts sometimes leads to the

continuation of health care inequality. A lack of compliance in a patient’s past can sometimes
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result in tougher planning or more examinations, contributing to greater health inequality. When
adding predictive models to clinical systems, attention must be given to the user interface as well
as how decisions are supported (Houghton & Hankinson, 2021). Outputs for healthcare providers
must be easily understood and should enhance their decision-making. Here, the fact that logistic
regression is easy to explain to clinicians is very useful.

5.8 Limitations and Future Research Directions

While the study demonstrates remarkable predictive performance, several limitations
warrant consideration. Analysis was dependent on data from a single Healthcare system from the
Johns Hopkins Aramco Healthcare. This led to the development of a reduction in the
generalizability of the data developed in the research for other Healthcare contexts having
different patient populations, clinical protocols and administrative systems. The temporal scope
of the analysis may also influence findings (Carver et al., 2021). Healthcare behaviors and cancer
risk factors can evolve due to changing medical guidelines, technological advances, or
population health trends. The models' performance in future periods or different healthcare
environments requires validation.

The cancer prediction model's recall limitations suggest opportunities for enhanced
feature engineering, particularly the incorporation of genetic information, detailed lifestyle
factors, and advanced imaging features. Future research could explore the integration of genomic
data, wearable device information, and social determinants of health to improve cancer
prediction accuracy (Prinzi et al., 2024). The perfect compliance prediction performance, while
impressive, may indicate potential overfitting to the specific dataset characteristics. Acquisition
of external validations related to different Healthcare environments would have helped in
improving the confidence in the generalizability and comprehensiveness of the model.

5.9 Implications for Personalized Medicine

The findings helped in gathering a broader understanding regarding the vision of

personalized machine learning by highlighting how the employment of routine Healthcare

administrative data can be transformed into highly effective and powerful predictive resources.

Aspect Observation Implication/Future Direction

Model Simple models Indicates that effective predictions may not

Complexity achieved strong require complex or costly data or algorithms.
performance.
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Encourages practical implementation in

resource-constrained settings.

Task Readiness

Compliance prediction

outperformed cancer

Demonstrates that some healthcare prediction

tasks are more mature and clinically viable than

prediction. others.
Implementation | Compliance prediction | Cancer prediction requires further research,
Potential is suitable for threshold optimization, and validation before
immediate clinical clinical deployment.
use.
Strategic Study supports a Suggests prioritizing deployment of well-
Integration tiered prediction performing models (e.g., compliance) while
strategy. continuing to refine and validate more complex

predictions (e.g., cancer risk).
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Chapter 6 - Conclusion
6.1 Key Findings and Contributions

As a result of this thorough research, we have learned a great deal about predictive
healthcare analytics related to artificial intelligence and mammogram screening in women. The
analysis of 28,593 patient records from Johns Hopkins Aramco Healthcare gives evidence of the
benefits and difficulties of machine learning in clinical screening situations. The models showed
high performance in forecasting whether people would be screened by mammography, which
nearly or completely correctly classified the cases. The level of accuracy for the logistic
regression model was 99.6%, but both the random forest and neural network models reached
100%. The strong pattern found here indicates that compliance with appointments depends
mainly on the schedule itself and other statistical factors, creating new health-intervention
options.

It was more challenging to predict breast cancer since risk assessment in biology is
naturally complex. While the cancer prediction model achieved strong overall performance
(98.3% accuracy, 0.978 AUC-ROC), the 74.2% recall rate indicates that approximately one-
quarter of actual cancer cases remain undetected. This performance differential illuminates
fundamental differences between behavioral prediction tasks, which appear highly learnable
from administrative data, and biological prediction tasks, which require more sophisticated
approaches and additional data sources.

The feature importance analysis revealed critical insights into the mechanisms driving
both compliance behavior and cancer risk. Compliance prediction was dominated by temporal
and scheduling features, with overdue appointment status accounting for 43.7% of predictive
power, while cancer prediction was driven primarily by demographic factors (41.9%
contribution). This divergence suggests that effective healthcare interventions must employ
different strategies for behavioral versus biological outcomes.

6.2 Clinical and Operational Implications

The study's findings have immediate practical applications for healthcare system
optimization. The perfect predictive accuracy for compliance enables healthcare providers to
implement precision-targeted intervention strategies, focusing limited resources on the
approximately 72% of patients predicted to be non-compliant. This capability represents a

paradigm shift from broad population-based outreach to individualized intervention strategies
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that maximize efficiency and effectiveness. For cancer prediction, the models' strong
discrimination abilities (AUC-ROC values exceeding 0.970) provide valuable risk stratification
capabilities, even with imperfect binary classification performance. The findings suggest that
threshold optimization favoring sensitivity over specificity may be clinically warranted,
accepting increased false positive rates to minimize the more costly false negative outcomes in
cancer screening contexts.

The research demonstrates that sophisticated predictive capabilities can be achieved using
routine administrative healthcare data without requiring expensive additional data collection
efforts. This accessibility suggests that similar predictive modelling approaches could be
implemented across diverse healthcare settings, potentially democratizing advanced healthcare
analytics.

6.3 Methodological Innovations

The study's innovative approach to data quality challenges, particularly the
transformation of missing appointment dates into predictive features, exemplifies creative
solutions to common healthcare analytics problems. This methodology demonstrates that data
incompleteness can carry meaningful information rather than representing mere quality issues,
contributing 10.8% to compliance prediction performance.

The comprehensive feature engineering workflow, including temporal decomposition,
clinical guideline integration, and behavioral pattern extraction, provides a replicable framework
for transforming administrative healthcare data into meaningful predictive signals. The success
of relatively simple models (particularly logistic regression) suggests that interpretability and
computational efficiency need not be sacrificed for predictive performance in many healthcare
applications.

6.4 Limitations and Future Directions

Despite the remarkable findings, several limitations warrant acknowledgement.

Aspect Observation Implication/Future Direction
Data Source Relied on a single Limits generalizability to different systems
Limitation healthcare system with varied populations, protocols, or

(Johns Hopkins Aramco | administrative contexts. External validation

Healthcare). is needed.
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Compliance
Prediction

Performance

Perfect prediction

results.

Impressive but may reflect overfitting;
requires validation in diverse settings to

ensure robustness and reliability.

Cancer Prediction
Model — Recall

Issues

Limited recall in the

cancer prediction task.

Indicates need for improved feature
engineering and additional data sources

(e.g., genetic, lifestyle, imaging data).

Data Enhancement

The current model lacks

Future research should integrate genomic,

vs. Performance

performed well.

Strategies multi-modal data. wearable, lifestyle, and imaging data to
enhance predictive power while keeping
models clinically usable.

Model Complexity | Simple models Suggests effective predictions can be

achieved without complex algorithms or
expensive data collection, facilitating

practical implementation.

disparities.

Task Maturity Compliance prediction | Compliance prediction is ready for
Comparison is more mature than deployment; cancer prediction needs more
cancer prediction. R&D and threshold optimization before

clinical use.

Tiered Varying readiness of Supports a phased approach: deploy ready

Implementation prediction tasks. models (e.g., compliance) and refine

Strategy complex ones (e.g., cancer risk) for future
use.

Equity and Bias Models may reflect Calls for ongoing bias monitoring and

Considerations historical healthcare correction to ensure fair and equitable

model deployment across diverse

populations.

6.5 Broader Impact and Significance

This research contributes to the growing evidence base supporting the integration of

artificial intelligence into routine healthcare delivery. However, the results suggest that it may be

simpler than expected to put these analytics into use, allowing their adoption to increase sooner

than expected in many health institutions. From the study findings, it appears that highly accurate
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prediction jobs like forecasting patient compliance can be promptly applied to enhance health
care, and harder predictions should be gradually developed and carefully integrated into the
clinical setting. Utilizing this technique, users receive benefits quickly while still allowing
developers to increase capabilities in more difficult domains.

The findings show that artificial intelligence adds great strength to preventive healthcare,
improving both processes and clinical outcomes. Using the collected data to generate useful
forecasts, healthcare teams can respond to situations ahead of time and enhance both the results
for patients and the usage of available resources. The results from using machine learning in
mammogram screening provide a good example for using more predictive analytics in medicine,

showing how to reach more efficiently, effectively and individually tailored healthcare.



MAMMOGRAM SCREENING COMPLIANCE 49

References:
Agrawal, P., Chen, T. A., McNeill, L. H., Acquati, C., Connors, S. K., Nitturi, V., ... & Reitzel, L.
R. (2021). Factors associated with breast cancer screening adherence among church-going
African American women. International Journal of Environmental Research and Public

Health, 18(16), 8494. https://www.mdpi.com/1660-4601/18/16/8494

Alcazar-Bejerano, 1. L. (2014). Health behaviours, disparities and deterring factors for breast
cancer screening of immigrant women-a challenge to health care professionals. Journal of

Lifestyle Medicine, 4(1), 55. https://pmc.ncbi.nlm.nih.gov/articles/PMC4390760/

Allweis, T. M., Hermann, N., Berenstein-Molho, R., & Guindy, M. (2021). Personalised
screening for breast cancer: Rationale, present practices, and future directions. Annals of
Surgical Oncology, 28(8), 4306—4317. https://link.springer.com/article/10.1245/s10434-
020-09426-1

AlSambhori, J. F., AlSamhori, A. R. F., Duncan, L. A., Qalajo, A., Alshahwan, H. F., Al-abbadi, M.,
... & Nashwan, A. J. (2024). Artificial intelligence for breast cancer: Implications for
diagnosis and management. Journal of Medicine, Surgery, and Public Health, 3, 100120.
https://www.sciencedirect.com/science/article/pii/S2949916X24000732

American ~ Cancer  Society. (2025). Key  Statistics for  Breast  Cancer.
https://www.cancer.org/cancer/types/breast-cancer/about/how-common-is-breast-
cancer.html#:~:text=Breast%20cancer%20is%20the%20second.decline%200f%2044%25
%20through%:202022.

Arasu, V. A., Habel, L. A., Achacoso, N. S., Buist, D. S., Cord, J. B., Esserman, L. J., ... & Lee,
C. (2023). Comparison of mammography Al algorithms with a clinical risk model for 5-
year breast cancer risk prediction: An observational study. Radiology, 307(5), €222733.
https://pubs.rsna.org/doi/abs/10.1148/radiol.222733

Arleo, E. K., Hendrick, R. E., Helvie, M. A., & Sickles, E. A. (2017). Comparison of
recommendations for screening mammography using CISNET models. Cancer, 123(19),

3673-3680. https://doi.ore/10.1002/cncr.30842



https://www.mdpi.com/1660-4601/18/16/8494
https://pmc.ncbi.nlm.nih.gov/articles/PMC4390760/
https://link.springer.com/article/10.1245/s10434-020-09426-1
https://link.springer.com/article/10.1245/s10434-020-09426-1
https://www.sciencedirect.com/science/article/pii/S2949916X24000732
https://www.cancer.org/cancer/types/breast-cancer/about/how-common-is-breast-cancer.html#:~:text=Breast%20cancer%20is%20the%20second,decline%20of%2044%25%20through%202022
https://www.cancer.org/cancer/types/breast-cancer/about/how-common-is-breast-cancer.html#:~:text=Breast%20cancer%20is%20the%20second,decline%20of%2044%25%20through%202022
https://www.cancer.org/cancer/types/breast-cancer/about/how-common-is-breast-cancer.html#:~:text=Breast%20cancer%20is%20the%20second,decline%20of%2044%25%20through%202022
https://pubs.rsna.org/doi/abs/10.1148/radiol.222733
https://doi.org/10.1002/cncr.30842

MAMMOGRAM SCREENING COMPLIANCE 50

Balthazar, P., Harri, P., Prater, A., & Safdar, N. M. (2018). Protecting your patients’ interests in the
era of big data, artificial intelligence, and predictive analytics. Journal of the American
College of Radiology, 15(3), 580-586.
https://www.sciencedirect.com/science/article/pii/S1546144017315995
Kim, H. E., Kim, H. H., Han, B. K., Kim, K. H., Han, K., Nam, H., ... & Kim, E. K. (2020).

Changes in cancer detection and false-positive recall in mammography using artificial
intelligence: a retrospective, multireader study. The Lancet Digital Health, 2(3), e138-
el4s. https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30003-
O/fulltext

Brooks, J. D., Nabi, H., Andrulis, I. L., Antoniou, A. C., Chiquette, J., Després, P., ... & Simard,
J. (2021). Personalised risk assessment for prevention and early detection of breast
cancer: Integration and implementation (PERSPECTIVE 1&l1). Journal of Personalised
Medicine, 11(6), 511. https://www.mdpi.com/2075-4426/11/6/511

Carver, T., Hartley, S., Lee, A., Cunningham, A. P., Archer, S., Babb de Villiers, C., ... &
Antoniou, A. C. (2021). CanRisk Tool—A web interface for the prediction of breast and
ovarian cancer risk and the likelihood of carrying genetic pathogenic variants. Cancer
Epidemiology, Biomarkers & Prevention, 30(3), 469—473.
https://aacrjournals.org/cebp/article-abstract/30/3/469/264109

Corti, C., Cobanaj, M., Marian, F., Dee, E. C., Lloyd, M. R., Marcu, S., ... & Curigliano, G.
(2022). Attificial intelligence for prediction of treatment outcomes in breast cancer:

Systematic review of design, reporting standards, and bias. Cancer Treatment Reviews,

108, 102410. https://www.sciencedirect.com/science/article/pii/S0305737222000743

Dembrower, K., Crippa, A., Colon, E., Eklund, M., & Strand, F. (2023). Artificial intelligence for
breast cancer detection in screening mammography in Sweden: a prospective, population-
based, paired-reader, non-inferiority study. The Lancet Digital Health, 5(10), €703-e711.
https://www.thelancet.com/journals/landig/article/PIIS2589-7500(23)00153-X/fulltext

Dembrower, K., Wéhlin, E., Liu, Y., Salim, M., Smith, K., Lindholm, P, ... & Strand, F. (2020).

Effect of artificial intelligence-based triaging of breast cancer screening mammograms on


https://www.sciencedirect.com/science/article/pii/S1546144017315995
https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30003-0/fulltext
https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30003-0/fulltext
https://www.mdpi.com/2075-4426/11/6/511
https://aacrjournals.org/cebp/article-abstract/30/3/469/264109
https://www.sciencedirect.com/science/article/pii/S0305737222000743
https://www.thelancet.com/journals/landig/article/PIIS2589-7500(23)00153-X/fulltext

MAMMOGRAM SCREENING COMPLIANCE 51

cancer detection and radiologist workload: a retrospective simulation study. The Lancet
Digital Health, 2(9), e468-e474.
https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30185-0/fulltext

Dervovic, D., Lécug, F., Marchesotti, N. and Magazzeni, D., 2024. Are logistic models really
interpretable?. arXiv preprint arXiv:2406.13427.

Ferreira, C. S., Rodrigues, J., Moreira, S., Ribeiro, F., & Longatto-Filho, A. (2021). Breast cancer
screening adherence rates and barriers of implementation in ethnic, cultural, and religious
minorities: a systematic review. Molecular and clinical oncology, 15(1), 139.

https://www.spandidos-publications.com/10.3892/mco0.2021.2301

Ghantasala, G. P., Hung, B. T., Chakrabarti, P., & Pellakuri, V. (2024). Artificial intelligence-based
machine learning algorithm for prediction of cancer in female anatomy. Multimedia Tools

and Applications, 1-27. https://link.springer.com/article/10.1007/s11042-024-19655-1

Giaquinto, A. N., Sung, H., Miller, K. D., Kramer, J. L., Newman, L. A., Minihan, A., ... & Siegel,
R. L. (2022). Breast cancer statistics, 2022. CA: a cancer journal for clinicians, 72(6), 524-
541.

https://www.researchgate.net/publication/364149216_Breast Cancer_Statistics_2022#:~:

text=Breast%20cancer%20incidence%?20rates%20have.and%20hormone%?20receptor%E
2%80%90positive%20disease.

Hardesty, L. A., Lind, K. E., & Gutierrez, E. J. (2016). Compliance with screening mammography
guidelines after a false-positive mammogram. Journal of the American College of
Radiology, 13(9), 1032-1038.

https://www.sciencedirect.com/science/article/pii/S1546144016301077

Houghton, S. C., & Hankinson, S. E. (2021). Cancer progress and priorities: Breast cancer.
Cancer Epidemiology, Biomarkers & Prevention, 30(5), 822—844.
https://aacrjournals.org/cebp/article-abstract/30/5/822/670821



https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30185-0/fulltext
https://www.spandidos-publications.com/10.3892/mco.2021.2301
https://link.springer.com/article/10.1007/s11042-024-19655-1
https://www.researchgate.net/publication/364149216_Breast_Cancer_Statistics_2022#:~:text=Breast%20cancer%20incidence%20rates%20have,and%20hormone%20receptor%E2%80%90positive%20disease
https://www.researchgate.net/publication/364149216_Breast_Cancer_Statistics_2022#:~:text=Breast%20cancer%20incidence%20rates%20have,and%20hormone%20receptor%E2%80%90positive%20disease
https://www.researchgate.net/publication/364149216_Breast_Cancer_Statistics_2022#:~:text=Breast%20cancer%20incidence%20rates%20have,and%20hormone%20receptor%E2%80%90positive%20disease
https://www.sciencedirect.com/science/article/pii/S1546144016301077
https://aacrjournals.org/cebp/article-abstract/30/5/822/670821

MAMMOGRAM SCREENING COMPLIANCE 52

Izmirlian, G., 2004. Application of the random forest classification algorithm to a SELDI-TOF
proteomics study in the setting of a cancer prevention trial. Annals of the New York

Academy of Sciences, 1020(1), pp.154-174.

Kerlikowske, K., Chen, S., Golmakani, M. K., Sprague, B. L., Tice, J. A., Tosteson, A. N., ... &
Miglioretti, D. L. (2022). A cumulative advanced breast cancer risk prediction model was
developed in a screening mammography population. JNCI: Journal of the National
Cancer Institute, 114(5), 676—685. https://academic.oup.com/jnci/article-
abstract/114/5/676/6506541

Keshavarzi, A., Asadi, S., Asadollahi, A., Mohammadkhah, F., & Khani Jeihooni, A. (2022).
Tendency to breast cancer screening among rural women in Southern Iran: A structural
equation modelling (SEM) analysis of the theory of planned behaviour. Breast Cancer:
Basic and Clinical Research, 16, 11782234221121001.
https://journals.sagepub.com/doi/abs/10.1177/11782234221121001

Khalid, A., Mehmood, A., Alabrah, A., Alkhamees, B. F., Amin, F., AlSalman, H., & Choi, G. S.
(2023). Breast cancer detection and prevention using machine learning. Diagnostics,

13(19), 3113.

Khan, S. A., Hernandez-Villafuerte, K. V., Muchadeyi, M. T., & Schlander, M. (2021). Cost-
effectiveness of risk-based breast cancer screening: A systematic review. International

Journal of Cancer, 149(4), 790-810.

Khurshid, F., Zia, 1., Ayesha, U. A., Yaqoob, F., Khurshid, H., Zia, A., & Khurshid, A. (2023). The
Significance of Screening Mammography: A Preliminary Study. Ann Jinnah Sindh Med
Uni, 9(2), 42-48.
https://www.researchgate.net/publication/377600072_The_Significance_of Screening M

ammography A_Preliminary Study

Leberg, M., Lousdal, M. L., Bretthauer, M., & Kalager, M. (2015). Benefits and harms of
mammography screening. Breast cancer research, 17, 1-12.

https://link.springer.com/article/10.1186/s13058-015-0525-z



https://academic.oup.com/jnci/article-abstract/114/5/676/6506541
https://academic.oup.com/jnci/article-abstract/114/5/676/6506541
https://journals.sagepub.com/doi/abs/10.1177/11782234221121001
https://www.researchgate.net/publication/377600072_The_Significance_of_Screening_Mammography_A_Preliminary_Study
https://www.researchgate.net/publication/377600072_The_Significance_of_Screening_Mammography_A_Preliminary_Study
https://link.springer.com/article/10.1186/s13058-015-0525-z

MAMMOGRAM SCREENING COMPLIANCE 53

Mahesh, T. R., Vinoth Kumar, V., Vivek, V., Karthick Raghunath, K. M., & Sindhu Madhuri, G.
(2024). Early predictive model for breast cancer classification using blended ensemble

learning. International Journal of System Assurance Engineering and Management,

15(1), 188-197. https://link.springer.com/article/10.1007/s13198-022-01696-0

Olalekan Kehinde, A., 2025. Leveraging Machine Learning for Predictive Models in Healthcare
to Enhance Patient Outcome Management. Int Res J] Mod Eng Technol Sci, 7(1), p.1465.

Prinzi, F., Insalaco, M., Orlando, A., Gaglio, S., & Vitabile, S. (2024). A YOLO-based model for

breast cancer detection in mammograms. Cognitive Computation, 16(1), 107—120.

Rahman, S. M., Dignan, M. B., & Shelton, B. J. (2003). Factors influencing adherence to
guidelines for screening mammography among women aged 40 years and older. Ethnicity

& disease, 13(4), 477. https://pmc.ncbi.nlm.nih.gov/articles/PMC2848385/

Reece, J. C., Neal, E. F., Nguyen, P., McIntosh, J. G., & Emery, J. D. (2021). Delayed or failure
to follow-up abnormal breast cancer screening mammograms in primary care: A
systematic review. BMC Cancer, 21, 1-14.
https://link.springer.com/article/10.1186/s12885-021-08100-3

Ritchie, D., Van den Broucke, S., & Van Hal, G. (2021). The health belief model and theory of
planned behaviour applied to mammography screening: A systematic review and meta-
analysis. Public Health Nursing, 38(3), 482—492.
https://onlinelibrary.wiley.com/doi/abs/10.1111/phn.12842

Rodriguez-Ruiz, A., Krupinski, E., Mordang, J. J., Schilling, K., Heywang-Kobrunner, S. H.,
Sechopoulos, I., & Mann, R. M. (2019). Detection of breast cancer with mammography:
effect of an artificial intelligence support system. Radiology, 290(2), 305-314.
https://pubs.rsna.org/doi/abs/10.1148/radiol.2018181371

Rodriguez-Ruiz, A., Krupinski, E., Mordang, J.J., Schilling, K., Heywang-Kobrunner, S.H.,
Sechopoulos, I. and Mann, R.M., 2019. Detection of breast cancer with mammography:

effect of an artificial intelligence support system. Radiology, 290(2), pp.305-314.


https://link.springer.com/article/10.1007/s13198-022-01696-0
https://pmc.ncbi.nlm.nih.gov/articles/PMC2848385/
https://link.springer.com/article/10.1186/s12885-021-08100-3
https://onlinelibrary.wiley.com/doi/abs/10.1111/phn.12842
https://pubs.rsna.org/doi/abs/10.1148/radiol.2018181371

MAMMOGRAM SCREENING COMPLIANCE 54

Schaffter, T., Buist, D. S., Lee, C. 1., Nikulin, Y., Ribli, D., Guan, Y., ... & DM DREAM
Consortium. (2020). Evaluation of combined artificial intelligence and radiologist
assessment to interpret screening mammograms. JAMA network open, 3(3), €200265-

€200265. https://jamanetwork.com/journals/jamanetworkopen/article-abstract/2761795

Sterlingova, T., Nylander, E., Almqvist, L., & Christensen, B. M. (2023). Factors affecting
women's participation in mammography screening in Nordic countries: A systematic
review. Radiography, 29(5), 878-885.
https://www.sciencedirect.com/science/article/pii/S1078817423001360

Tanveer, H., Faheem, M., Khan, A. H., & Adam, M. A. (2025). Al-powered diagnosis: A machine
learning approach to early detection of breast cancer. International Journal of
Engineering Development and Research, 13(2), 153—166.
https://rjwave.org/ijedr/viewpaperforall.php?paper=IJEDR2502021

Tavakoli, B., Feizi, A., Zamani-Alavijeh, F., & Shahnazi, H. (2024). Factors influencing breast
cancer screening practices among women worldwide: a systematic review of observational
and qualitative studies. BMC Women's Health, 24(1), 268.
https://link.springer.com/article/10.1186/512905-024-03096-x

Thacker, B.H., Doebling, S.W., Hemez, F.M., Anderson, M.C., Pepin, J.E. and Rodriguez, E.A.,

2004. Concepts of model verification and validation

Vyas, A., Madhavan, S., LeMasters, T., Atkins, E., Gainor, S., Kennedy, S., ... & Remick, S. (2012).
Factors influencing adherence to mammography screening guidelines in Appalachian
women participating in a mobile mammography program. Journal of Community

Health, 37, 632-646. https://link.springer.com/article/10.1007/s10900-011-9494-z

World Health Organization. (2024). Breast cancer. https:/www.who.int/news-room/fact-

sheets/detail/breast-cancer

Yala, A., Mikhael, P. G., Strand, F., Lin, G., Satuluru, S., Kim, T., ... & Barzilay, R. (2022).

Multi-institutional validation of a mammography-based breast cancer risk model. Journal


https://jamanetwork.com/journals/jamanetworkopen/article-abstract/2761795
https://www.sciencedirect.com/science/article/pii/S1078817423001360
https://rjwave.org/ijedr/viewpaperforall.php?paper=IJEDR2502021
https://link.springer.com/article/10.1186/s12905-024-03096-x
https://link.springer.com/article/10.1007/s10900-011-9494-z
https://www.who.int/news-room/fact-sheets/detail/breast-cancer
https://www.who.int/news-room/fact-sheets/detail/breast-cancer

MAMMOGRAM SCREENING COMPLIANCE 55

of Clinical Oncology, 40(16), 1732—-1740.
https://ascopubs.org/doi/abs/10.1200/JC0O.21.01337

Yala, A., Schuster, T., Miles, R., Barzilay, R., & Lehman, C. (2019). A deep learning model to
triage screening mammograms: a simulation study. Radiology, 293(1), 38-46.

https://jamanetwork.com/journals/jamanetworkopen/article-abstract/2761795

Zapka, J. G., Stoddard, A., Maul, L., & Costanza, M. E. (1991). Interval adherence to
mammography screening guidelines. Medical Care, 697-707.
https://www.jstor.org/stable/3766098



https://ascopubs.org/doi/abs/10.1200/JCO.21.01337
https://jamanetwork.com/journals/jamanetworkopen/article-abstract/2761795
https://www.jstor.org/stable/3766098

	Abstract
	Chapter 1 - Introduction
	1.1. Overview:
	1.2. Research Objectives and Approach
	1.3. Expected Outcomes

	Chapter 2: Literature Review
	2.1. Importance of Mammogram Screening
	2.2. Factors Influencing Mammogram Screening Compliance
	2.3. Role of Artificial Intelligence in Predictive Modeling for Healthcare
	2.4. Research Gaps:

	Chapter 3 – Methodology:
	3.1 Study Design
	3.2 Data Sources and Variables
	3.2.1 Data Collection
	3.2.2 Key Variables

	3.3 Analytical Methods
	3.3.1 Data Preprocessing
	3.3.2 Statistical Analysis

	3.4 Predictive Modelling
	3.5 Ethical Considerations

	Chapter 4: Findings and Analysis
	4.1. Introduction
	4.2. Dataset Characteristics and Preprocessing
	4.3. Compliance Prediction Models Performance
	4.3.1. Logistic Regression Model
	4.3.2. Random Forest Model
	4.3.4. Breast Cancer Prediction Model Performance

	4.4. Feature Importance Analysis
	4.4.1. Compliance Prediction
	4.4.2. Cancer Prediction
	4.4.3. Cross-Model Feature Consistency

	4.5. Feature Correlation Analysis
	4.5.1. Primary Correlation Clusters
	4.5.2. Temporal Patterns in Healthcare Utilization

	4.6. Model Interpretability and Clinical Significance
	4.6.1. Interpretability of Compliance Models
	4.6.2. Clinical Relevance of Cancer Prediction
	4.6.3. Balancing Sensitivity and Specificity
	4.6.4. Neural Network Performance Analysis

	4.7. Clinical and Operational Implications
	4.7.1. Compliance Prediction Applications
	4.7.2. Cancer Prediction Limitations

	4.8. Recommendations for Model Deployment
	4.9. Conclusion

	Chapter 5 - Discussion and Insights
	5.1 Introduction
	5.2 Behavioral Predictability in Healthcare Compliance
	5.3 The Complexity of Cancer Risk Prediction
	5.4 Feature Engineering and Data Quality Insights
	5.5 Cross-Model Feature Consistency and Divergence
	5.6 Clinical Decision-Making and Risk Stratification
	5.7 Healthcare System Integration and Operational Considerations
	5.8 Limitations and Future Research Directions
	5.9 Implications for Personalized Medicine

	Chapter 6 - Conclusion
	6.1 Key Findings and Contributions
	6.2 Clinical and Operational Implications
	6.3 Methodological Innovations
	6.4 Limitations and Future Directions
	6.5 Broader Impact and Significance

	References:

